Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import cv2
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
# Load YOLOv5 model
|
| 7 |
+
def load_model():
|
| 8 |
+
return torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
|
| 9 |
+
|
| 10 |
+
model = load_model()
|
| 11 |
+
|
| 12 |
+
# YOLOv5 object detection function
|
| 13 |
+
def yolo_object_detection(frame):
|
| 14 |
+
# Convert Gradio's RGB frame to BGR for OpenCV processing
|
| 15 |
+
img_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
| 16 |
+
|
| 17 |
+
# Perform YOLOv5 inference
|
| 18 |
+
results = model(img_bgr)
|
| 19 |
+
detections = results.pandas().xyxy[0]
|
| 20 |
+
|
| 21 |
+
# Draw bounding boxes and labels
|
| 22 |
+
for _, row in detections.iterrows():
|
| 23 |
+
x1, y1, x2, y2 = int(row['xmin']), int(row['ymin']), int(row['xmax']), int(row['ymax'])
|
| 24 |
+
label = f"{row['name']} {row['confidence']:.2f}"
|
| 25 |
+
cv2.rectangle(img_bgr, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
| 26 |
+
cv2.putText(img_bgr, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (36, 255, 12), 2)
|
| 27 |
+
|
| 28 |
+
# Convert back to RGB for Gradio display
|
| 29 |
+
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
|
| 30 |
+
return img_rgb
|
| 31 |
+
|
| 32 |
+
# Gradio interface for real-time object detection
|
| 33 |
+
with gr.Blocks() as demo:
|
| 34 |
+
with gr.Row():
|
| 35 |
+
with gr.Column():
|
| 36 |
+
# Video input from webcam
|
| 37 |
+
input_img = gr.Image(sources=["webcam"], type="numpy", label="Webcam Input")
|
| 38 |
+
with gr.Column():
|
| 39 |
+
# Output with detected objects
|
| 40 |
+
output_img = gr.Image(streaming=True, label="YOLOv5 Object Detection Output")
|
| 41 |
+
|
| 42 |
+
# Stream YOLOv5 object detection
|
| 43 |
+
input_img.stream(yolo_object_detection, inputs=[input_img], outputs=[output_img],
|
| 44 |
+
time_limit=30, stream_every=0.1, concurrency_limit=30)
|
| 45 |
+
|
| 46 |
+
# Launch the app
|
| 47 |
+
demo.launch()
|