Spaces:
Configuration error
Configuration error
HeTalksInMaths
commited on
Commit
Β·
67549a7
1
Parent(s):
5fd9547
Add app.py with progressive database expansion (5K batches)
Browse files
app.py
ADDED
|
@@ -0,0 +1,695 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
ToGMAL Combined Demo - Difficulty Analyzer + Chat Interface
|
| 4 |
+
===========================================================
|
| 5 |
+
|
| 6 |
+
Tabbed interface combining:
|
| 7 |
+
1. Difficulty Analyzer - Direct vector DB analysis
|
| 8 |
+
2. Chat Interface - LLM with MCP tool calling
|
| 9 |
+
|
| 10 |
+
Perfect for demos and VC pitches!
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
import gradio as gr
|
| 14 |
+
import json
|
| 15 |
+
import os
|
| 16 |
+
import re
|
| 17 |
+
from pathlib import Path
|
| 18 |
+
from typing import List, Dict, Tuple, Optional
|
| 19 |
+
from benchmark_vector_db import BenchmarkVectorDB
|
| 20 |
+
import logging
|
| 21 |
+
|
| 22 |
+
logging.basicConfig(level=logging.INFO)
|
| 23 |
+
logger = logging.getLogger(__name__)
|
| 24 |
+
|
| 25 |
+
# Initialize the vector database (shared by both tabs)
|
| 26 |
+
db_path = Path("./data/benchmark_vector_db")
|
| 27 |
+
db = None
|
| 28 |
+
|
| 29 |
+
def get_db():
|
| 30 |
+
"""Lazy load the vector database."""
|
| 31 |
+
global db
|
| 32 |
+
if db is None:
|
| 33 |
+
try:
|
| 34 |
+
logger.info("Initializing BenchmarkVectorDB...")
|
| 35 |
+
db = BenchmarkVectorDB(
|
| 36 |
+
db_path=db_path,
|
| 37 |
+
embedding_model="all-MiniLM-L6-v2"
|
| 38 |
+
)
|
| 39 |
+
logger.info("β BenchmarkVectorDB initialized successfully")
|
| 40 |
+
except Exception as e:
|
| 41 |
+
logger.error(f"Failed to initialize BenchmarkVectorDB: {e}")
|
| 42 |
+
raise
|
| 43 |
+
return db
|
| 44 |
+
|
| 45 |
+
# Build database if needed (first launch)
|
| 46 |
+
try:
|
| 47 |
+
db = get_db()
|
| 48 |
+
current_count = db.collection.count()
|
| 49 |
+
|
| 50 |
+
if False and current_count == 0:
|
| 51 |
+
logger.info("Database is empty - building initial 5K sample...")
|
| 52 |
+
from datasets import load_dataset
|
| 53 |
+
from benchmark_vector_db import BenchmarkQuestion
|
| 54 |
+
import random
|
| 55 |
+
|
| 56 |
+
test_dataset = load_dataset("TIGER-Lab/MMLU-Pro", split="test")
|
| 57 |
+
total_questions = 0 # disabled in demo
|
| 58 |
+
|
| 59 |
+
if total_questions > 5000:
|
| 60 |
+
indices = random.sample(range(total_questions), 5000)
|
| 61 |
+
pass # selection disabled in demo
|
| 62 |
+
|
| 63 |
+
all_questions = []
|
| 64 |
+
for idx, item in enumerate(test_dataset):
|
| 65 |
+
question = BenchmarkQuestion(
|
| 66 |
+
question_id=f"mmlu_pro_test_{idx}",
|
| 67 |
+
source_benchmark="MMLU_Pro",
|
| 68 |
+
domain=item.get('category', 'unknown').lower(),
|
| 69 |
+
question_text=item['question'],
|
| 70 |
+
correct_answer=item['answer'],
|
| 71 |
+
choices=item.get('options', []),
|
| 72 |
+
success_rate=0.45,
|
| 73 |
+
difficulty_score=0.55,
|
| 74 |
+
difficulty_label="Hard",
|
| 75 |
+
num_models_tested=0
|
| 76 |
+
)
|
| 77 |
+
all_questions.append(question)
|
| 78 |
+
|
| 79 |
+
batch_size = 1000
|
| 80 |
+
for i in range(0, len(all_questions), batch_size):
|
| 81 |
+
batch = all_questions[i:i + batch_size]
|
| 82 |
+
db.index_questions(batch)
|
| 83 |
+
|
| 84 |
+
logger.info(f"β Database build complete! Indexed {len(all_questions)} questions")
|
| 85 |
+
else:
|
| 86 |
+
logger.info(f"β Loaded existing database with {current_count:,} questions")
|
| 87 |
+
except Exception as e:
|
| 88 |
+
logger.warning(f"Database initialization deferred: {e}")
|
| 89 |
+
db = None
|
| 90 |
+
|
| 91 |
+
# ============================================================================
|
| 92 |
+
# TAB 1: DIFFICULTY ANALYZER
|
| 93 |
+
# ============================================================================
|
| 94 |
+
|
| 95 |
+
def analyze_prompt_difficulty(prompt: str, k: int = 5) -> str:
|
| 96 |
+
"""Analyze a prompt and return difficulty assessment."""
|
| 97 |
+
if not prompt.strip():
|
| 98 |
+
return "Please enter a prompt to analyze."
|
| 99 |
+
|
| 100 |
+
try:
|
| 101 |
+
db = get_db()
|
| 102 |
+
result = db.query_similar_questions(prompt, k=k)
|
| 103 |
+
|
| 104 |
+
output = []
|
| 105 |
+
output.append(f"## π― Difficulty Assessment\n")
|
| 106 |
+
output.append(f"**Risk Level**: {result['risk_level']}")
|
| 107 |
+
output.append(f"**Success Rate**: {result['weighted_success_rate']:.1%}")
|
| 108 |
+
output.append(f"**Avg Similarity**: {result['avg_similarity']:.3f}")
|
| 109 |
+
output.append("")
|
| 110 |
+
output.append(f"**Recommendation**: {result['recommendation']}")
|
| 111 |
+
output.append("")
|
| 112 |
+
output.append(f"## π Similar Benchmark Questions\n")
|
| 113 |
+
|
| 114 |
+
for i, q in enumerate(result['similar_questions'], 1):
|
| 115 |
+
output.append(f"{i}. **{q['question_text'][:100]}...**")
|
| 116 |
+
output.append(f" - Source: {q['source']} ({q['domain']})")
|
| 117 |
+
output.append(f" - Success Rate: {q['success_rate']:.1%}")
|
| 118 |
+
output.append(f" - Similarity: {q['similarity']:.3f}")
|
| 119 |
+
output.append("")
|
| 120 |
+
|
| 121 |
+
total_questions = db.collection.count()
|
| 122 |
+
output.append(f"*Analyzed using {k} most similar questions from {total_questions:,} benchmark questions*")
|
| 123 |
+
|
| 124 |
+
return "\n".join(output)
|
| 125 |
+
except Exception as e:
|
| 126 |
+
return f"Error analyzing prompt: {str(e)}"
|
| 127 |
+
|
| 128 |
+
# ==========================================================================
|
| 129 |
+
# Database status and expansion helpers
|
| 130 |
+
# ==========================================================================
|
| 131 |
+
|
| 132 |
+
def get_database_info() -> str:
|
| 133 |
+
global db
|
| 134 |
+
if db is None:
|
| 135 |
+
return """### β οΈ Database Not Initialized
|
| 136 |
+
|
| 137 |
+
**Status:** Waiting for initialization
|
| 138 |
+
|
| 139 |
+
The vector database is not yet ready. It will initialize on first use.
|
| 140 |
+
"""
|
| 141 |
+
try:
|
| 142 |
+
db = get_db()
|
| 143 |
+
current_count = db.collection.count()
|
| 144 |
+
total_available = 32719
|
| 145 |
+
remaining = max(0, total_available - current_count)
|
| 146 |
+
progress_pct = (current_count / total_available * 100) if total_available > 0 else 0
|
| 147 |
+
info = "### π Database Status\n\n"
|
| 148 |
+
info += f"**Current Size:** {current_count:,} questions\n"
|
| 149 |
+
info += f"**Total Available:** {total_available:,} questions\n"
|
| 150 |
+
info += f"**Progress:** {progress_pct:.1f}% complete\n"
|
| 151 |
+
info += f"**Remaining:** {remaining:,} questions\n\n"
|
| 152 |
+
if remaining > 0:
|
| 153 |
+
clicks_needed = (remaining + 4999) // 5000
|
| 154 |
+
info += "π‘ Click 'Expand Database' to add 5,000 more questions\n"
|
| 155 |
+
info += f"π ~{clicks_needed} more clicks to reach full 32K+ dataset"
|
| 156 |
+
else:
|
| 157 |
+
info += "π Database is complete with all available questions!"
|
| 158 |
+
return info
|
| 159 |
+
except Exception as e:
|
| 160 |
+
return f"Error getting database info: {str(e)}"
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def expand_database(batch_size: int = 5000) -> str:
|
| 164 |
+
global db
|
| 165 |
+
try:
|
| 166 |
+
db = get_db()
|
| 167 |
+
from datasets import load_dataset
|
| 168 |
+
from benchmark_vector_db import BenchmarkQuestion
|
| 169 |
+
|
| 170 |
+
current_count = db.collection.count()
|
| 171 |
+
total_available = 32719
|
| 172 |
+
if current_count >= total_available:
|
| 173 |
+
return f"β
Database complete at {current_count:,}/{total_available:,}."
|
| 174 |
+
|
| 175 |
+
# Load MMLU-Pro validation set (not test, to avoid overlap)
|
| 176 |
+
logger.info(f"Expanding database by up to {batch_size} questions...")
|
| 177 |
+
dataset = load_dataset("TIGER-Lab/MMLU-Pro", split="validation")
|
| 178 |
+
|
| 179 |
+
# Calculate how many we've already indexed
|
| 180 |
+
start_idx = current_count
|
| 181 |
+
actual_batch_size = min(batch_size, len(dataset) - start_idx) # type: ignore
|
| 182 |
+
|
| 183 |
+
if actual_batch_size <= 0:
|
| 184 |
+
return "β
All MMLU-Pro validation questions already indexed."
|
| 185 |
+
|
| 186 |
+
new_questions = []
|
| 187 |
+
for idx in range(start_idx, start_idx + actual_batch_size):
|
| 188 |
+
item = dataset[idx] # type: ignore
|
| 189 |
+
q = BenchmarkQuestion(
|
| 190 |
+
question_id=f"mmlu_pro_val_{idx}",
|
| 191 |
+
source_benchmark="MMLU_Pro",
|
| 192 |
+
domain=str(item.get('category', 'unknown')).lower() if isinstance(item, dict) else 'unknown',
|
| 193 |
+
question_text=str(item['question']) if isinstance(item, dict) else str(item),
|
| 194 |
+
correct_answer=str(item['answer']) if isinstance(item, dict) else '',
|
| 195 |
+
choices=item.get('options', []) if isinstance(item, dict) else [],
|
| 196 |
+
success_rate=0.45, # MMLU-Pro average
|
| 197 |
+
difficulty_score=0.55,
|
| 198 |
+
difficulty_label="Hard",
|
| 199 |
+
num_models_tested=0
|
| 200 |
+
)
|
| 201 |
+
new_questions.append(q)
|
| 202 |
+
|
| 203 |
+
# Index the batch
|
| 204 |
+
if new_questions:
|
| 205 |
+
db.index_questions(new_questions)
|
| 206 |
+
|
| 207 |
+
new_count = db.collection.count()
|
| 208 |
+
remaining = max(0, len(dataset) - new_count) # type: ignore
|
| 209 |
+
|
| 210 |
+
result = f"β
Added {len(new_questions)} questions.\n\n"
|
| 211 |
+
result += f"**Total:** {new_count:,}/{len(dataset):,} (MMLU-Pro validation)\n" # type: ignore
|
| 212 |
+
result += f"**Remaining:** {remaining:,}\n"
|
| 213 |
+
if remaining > 0:
|
| 214 |
+
result += f"π‘ Click again to add up to {min(batch_size, remaining):,} more."
|
| 215 |
+
else:
|
| 216 |
+
result += "π All MMLU-Pro validation questions indexed!"
|
| 217 |
+
return result
|
| 218 |
+
|
| 219 |
+
except Exception as e:
|
| 220 |
+
logger.error(f"Expansion failed: {e}")
|
| 221 |
+
import traceback
|
| 222 |
+
error_details = traceback.format_exc()[:500]
|
| 223 |
+
return f"β Error expanding database: {str(e)}\n\nDetails:\n{error_details}"
|
| 224 |
+
|
| 225 |
+
# ============================================================================
|
| 226 |
+
# TAB 2: CHAT INTERFACE WITH MCP TOOLS
|
| 227 |
+
# ============================================================================
|
| 228 |
+
|
| 229 |
+
def tool_check_prompt_difficulty(prompt: str, k: int = 5) -> Dict:
|
| 230 |
+
"""MCP Tool: Analyze prompt difficulty."""
|
| 231 |
+
try:
|
| 232 |
+
db = get_db()
|
| 233 |
+
result = db.query_similar_questions(prompt, k=k)
|
| 234 |
+
|
| 235 |
+
return {
|
| 236 |
+
"risk_level": result['risk_level'],
|
| 237 |
+
"success_rate": f"{result['weighted_success_rate']:.1%}",
|
| 238 |
+
"avg_similarity": f"{result['avg_similarity']:.3f}",
|
| 239 |
+
"recommendation": result['recommendation'],
|
| 240 |
+
"similar_questions": [
|
| 241 |
+
{
|
| 242 |
+
"question": q['question_text'][:150],
|
| 243 |
+
"source": q['source'],
|
| 244 |
+
"domain": q['domain'],
|
| 245 |
+
"success_rate": f"{q['success_rate']:.1%}",
|
| 246 |
+
"similarity": f"{q['similarity']:.3f}"
|
| 247 |
+
}
|
| 248 |
+
for q in result['similar_questions'][:3]
|
| 249 |
+
]
|
| 250 |
+
}
|
| 251 |
+
except Exception as e:
|
| 252 |
+
return {"error": f"Analysis failed: {str(e)}"}
|
| 253 |
+
|
| 254 |
+
def tool_analyze_prompt_safety(prompt: str) -> Dict:
|
| 255 |
+
"""MCP Tool: Analyze prompt for safety issues."""
|
| 256 |
+
issues = []
|
| 257 |
+
risk_level = "low"
|
| 258 |
+
|
| 259 |
+
dangerous_patterns = [
|
| 260 |
+
r'\brm\s+-rf\b',
|
| 261 |
+
r'\bdelete\s+all\b',
|
| 262 |
+
r'\bformat\s+.*drive\b',
|
| 263 |
+
r'\bdrop\s+database\b'
|
| 264 |
+
]
|
| 265 |
+
|
| 266 |
+
for pattern in dangerous_patterns:
|
| 267 |
+
if re.search(pattern, prompt, re.IGNORECASE):
|
| 268 |
+
issues.append("Detected potentially dangerous file operation")
|
| 269 |
+
risk_level = "high"
|
| 270 |
+
break
|
| 271 |
+
|
| 272 |
+
medical_keywords = ['diagnose', 'treatment', 'medication', 'symptoms', 'cure', 'disease']
|
| 273 |
+
if any(keyword in prompt.lower() for keyword in medical_keywords):
|
| 274 |
+
issues.append("Medical advice request detected - requires professional consultation")
|
| 275 |
+
risk_level = "moderate" if risk_level == "low" else risk_level
|
| 276 |
+
|
| 277 |
+
if re.search(r'\b(build|create|write)\s+.*\b(\d{3,})\s+(lines|functions|classes)', prompt, re.IGNORECASE):
|
| 278 |
+
issues.append("Large-scale coding request - may exceed LLM capabilities")
|
| 279 |
+
risk_level = "moderate" if risk_level == "low" else risk_level
|
| 280 |
+
|
| 281 |
+
return {
|
| 282 |
+
"risk_level": risk_level,
|
| 283 |
+
"issues_found": len(issues),
|
| 284 |
+
"issues": issues if issues else ["No significant safety concerns detected"],
|
| 285 |
+
"recommendation": "Proceed with caution" if issues else "Prompt appears safe"
|
| 286 |
+
}
|
| 287 |
+
|
| 288 |
+
def call_llm_with_tools(
|
| 289 |
+
messages: List[Dict[str, str]],
|
| 290 |
+
available_tools: List[Dict],
|
| 291 |
+
model: str = "mistralai/Mistral-7B-Instruct-v0.2"
|
| 292 |
+
) -> Tuple[str, Optional[Dict]]:
|
| 293 |
+
"""Call LLM with tool calling capability."""
|
| 294 |
+
|
| 295 |
+
# Check if this is a TOOL_RESULT message - if so, synthesize response
|
| 296 |
+
last_msg = messages[-1] if messages else {}
|
| 297 |
+
if last_msg.get('role') == 'system' and 'TOOL_RESULT:' in last_msg.get('content', ''):
|
| 298 |
+
# Extract tool result
|
| 299 |
+
tool_result_str = last_msg['content']
|
| 300 |
+
|
| 301 |
+
# Simple synthesis based on the tool result
|
| 302 |
+
try:
|
| 303 |
+
import json
|
| 304 |
+
# Extract JSON from TOOL_RESULT: name=X data={...}
|
| 305 |
+
match = re.search(r'data=(.+)$', tool_result_str)
|
| 306 |
+
if match:
|
| 307 |
+
result_data = json.loads(match.group(1))
|
| 308 |
+
|
| 309 |
+
# Generate natural language synthesis
|
| 310 |
+
if 'risk_level' in result_data: # Difficulty analysis
|
| 311 |
+
risk = result_data['risk_level']
|
| 312 |
+
success = result_data.get('success_rate', 'unknown')
|
| 313 |
+
rec = result_data.get('recommendation', '')
|
| 314 |
+
|
| 315 |
+
response = f"""I've analyzed this prompt's difficulty. Here's what I found:
|
| 316 |
+
|
| 317 |
+
**Difficulty Assessment:** {risk}
|
| 318 |
+
|
| 319 |
+
Based on similarity to benchmark questions, LLMs have about a {success} success rate on similar tasks.
|
| 320 |
+
|
| 321 |
+
{rec}
|
| 322 |
+
|
| 323 |
+
This means """
|
| 324 |
+
|
| 325 |
+
if risk == "CRITICAL":
|
| 326 |
+
response += "this is extremely challenging - you'll likely need to break it into smaller steps or use specialized tools."
|
| 327 |
+
elif risk == "HIGH":
|
| 328 |
+
response += "this is quite difficult - consider using multi-step reasoning and verification."
|
| 329 |
+
elif risk == "MODERATE":
|
| 330 |
+
response += "this is moderately challenging - chain-of-thought prompting should help."
|
| 331 |
+
else:
|
| 332 |
+
response += "this is within normal LLM capabilities - a standard response should work well."
|
| 333 |
+
|
| 334 |
+
return response, None
|
| 335 |
+
|
| 336 |
+
elif 'issues_found' in result_data: # Safety analysis
|
| 337 |
+
risk = result_data['risk_level']
|
| 338 |
+
issues = result_data.get('issues', [])
|
| 339 |
+
|
| 340 |
+
response = f"""I've checked this prompt for safety concerns.
|
| 341 |
+
|
| 342 |
+
**Safety Assessment:** {risk.upper()} risk
|
| 343 |
+
|
| 344 |
+
"""
|
| 345 |
+
if issues and issues[0] != "No significant safety concerns detected":
|
| 346 |
+
response += "**Concerns identified:**\n"
|
| 347 |
+
for issue in issues:
|
| 348 |
+
response += f"- {issue}\n"
|
| 349 |
+
response += "\nPlease proceed carefully with this request."
|
| 350 |
+
else:
|
| 351 |
+
response += "No significant safety concerns detected. The prompt appears safe to process."
|
| 352 |
+
|
| 353 |
+
return response, None
|
| 354 |
+
except Exception as e:
|
| 355 |
+
logger.warning(f"Failed to synthesize tool result: {e}")
|
| 356 |
+
# Fall through to HuggingFace API attempt
|
| 357 |
+
|
| 358 |
+
# Try HuggingFace API for initial responses
|
| 359 |
+
try:
|
| 360 |
+
from huggingface_hub import InferenceClient
|
| 361 |
+
client = InferenceClient()
|
| 362 |
+
|
| 363 |
+
system_msg = """You are ToGMAL Assistant, an AI that helps analyze prompts for difficulty and safety.
|
| 364 |
+
|
| 365 |
+
You have access to these tools:
|
| 366 |
+
1. check_prompt_difficulty - Analyzes how difficult a prompt is for current LLMs
|
| 367 |
+
2. analyze_prompt_safety - Checks for safety issues in prompts
|
| 368 |
+
|
| 369 |
+
When a user asks about prompt difficulty, safety, or capabilities, use the appropriate tool.
|
| 370 |
+
To call a tool, respond with: TOOL_CALL: tool_name(arg1="value1", arg2="value2")
|
| 371 |
+
|
| 372 |
+
After a tool is called, you will receive: TOOL_RESULT: name=<tool_name> data=<json>
|
| 373 |
+
Use TOOL_RESULT to provide a helpful, comprehensive response to the user."""
|
| 374 |
+
|
| 375 |
+
conversation = system_msg + "\n\n"
|
| 376 |
+
for msg in messages:
|
| 377 |
+
role = msg['role']
|
| 378 |
+
content = msg['content']
|
| 379 |
+
if role == 'user':
|
| 380 |
+
conversation += f"User: {content}\n"
|
| 381 |
+
elif role == 'assistant':
|
| 382 |
+
conversation += f"Assistant: {content}\n"
|
| 383 |
+
elif role == 'system':
|
| 384 |
+
conversation += f"System: {content}\n"
|
| 385 |
+
|
| 386 |
+
conversation += "Assistant: "
|
| 387 |
+
|
| 388 |
+
response = client.text_generation(
|
| 389 |
+
conversation,
|
| 390 |
+
model=model,
|
| 391 |
+
max_new_tokens=512,
|
| 392 |
+
temperature=0.7,
|
| 393 |
+
top_p=0.95,
|
| 394 |
+
do_sample=True
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
response_text = response.strip()
|
| 398 |
+
tool_call = None
|
| 399 |
+
|
| 400 |
+
if "TOOL_CALL:" in response_text:
|
| 401 |
+
match = re.search(r'TOOL_CALL:\s*(\w+)\((.*?)\)', response_text)
|
| 402 |
+
if match:
|
| 403 |
+
tool_name = match.group(1)
|
| 404 |
+
args_str = match.group(2)
|
| 405 |
+
args = {}
|
| 406 |
+
for arg in args_str.split(','):
|
| 407 |
+
if '=' in arg:
|
| 408 |
+
key, val = arg.split('=', 1)
|
| 409 |
+
key = key.strip()
|
| 410 |
+
val = val.strip().strip('"\'')
|
| 411 |
+
args[key] = val
|
| 412 |
+
tool_call = {"name": tool_name, "arguments": args}
|
| 413 |
+
response_text = re.sub(r'TOOL_CALL:.*?\)', '', response_text).strip()
|
| 414 |
+
|
| 415 |
+
logger.info(f"β HuggingFace API call successful")
|
| 416 |
+
return response_text, tool_call
|
| 417 |
+
|
| 418 |
+
except Exception as e:
|
| 419 |
+
logger.warning(f"HuggingFace API unavailable ({str(e)[:100]}), using fallback")
|
| 420 |
+
return fallback_llm(messages, available_tools)
|
| 421 |
+
|
| 422 |
+
def fallback_llm(messages: List[Dict[str, str]], available_tools: List[Dict]) -> Tuple[str, Optional[Dict]]:
|
| 423 |
+
"""Fallback when HF API unavailable."""
|
| 424 |
+
last_message = messages[-1]['content'].lower() if messages else ""
|
| 425 |
+
|
| 426 |
+
# Safety intent first
|
| 427 |
+
if any(word in last_message for word in ['safe', 'safety', 'dangerous', 'risk']):
|
| 428 |
+
return "", {"name": "analyze_prompt_safety", "arguments": {"prompt": messages[-1]['content']}}
|
| 429 |
+
|
| 430 |
+
# Difficulty intent (expanded triggers)
|
| 431 |
+
if any(word in last_message for word in ['difficult', 'difficulty', 'hard', 'easy', 'challenging', 'analyze', 'analysis', 'assess', 'check']):
|
| 432 |
+
return "", {"name": "check_prompt_difficulty", "arguments": {"prompt": messages[-1]['content'], "k": 5}}
|
| 433 |
+
|
| 434 |
+
# Default: run difficulty analysis on any non-empty message
|
| 435 |
+
if last_message.strip():
|
| 436 |
+
return "", {"name": "check_prompt_difficulty", "arguments": {"prompt": messages[-1]['content'], "k": 5}}
|
| 437 |
+
|
| 438 |
+
return """I'm ToGMAL Assistant. I can help analyze prompts for:
|
| 439 |
+
- **Difficulty**: How challenging is this for current LLMs?
|
| 440 |
+
- **Safety**: Are there any safety concerns?
|
| 441 |
+
|
| 442 |
+
Try asking me to analyze a prompt!""", None
|
| 443 |
+
|
| 444 |
+
AVAILABLE_TOOLS = [
|
| 445 |
+
{
|
| 446 |
+
"name": "check_prompt_difficulty",
|
| 447 |
+
"description": "Analyzes how difficult a prompt is for current LLMs",
|
| 448 |
+
"parameters": {"prompt": "The prompt to analyze", "k": "Number of similar questions"}
|
| 449 |
+
},
|
| 450 |
+
{
|
| 451 |
+
"name": "analyze_prompt_safety",
|
| 452 |
+
"description": "Checks for safety issues in prompts",
|
| 453 |
+
"parameters": {"prompt": "The prompt to analyze"}
|
| 454 |
+
}
|
| 455 |
+
]
|
| 456 |
+
|
| 457 |
+
def execute_tool(tool_name: str, arguments: Dict) -> Dict:
|
| 458 |
+
"""Execute a tool and return results."""
|
| 459 |
+
if tool_name == "check_prompt_difficulty":
|
| 460 |
+
prompt = arguments.get("prompt", "")
|
| 461 |
+
try:
|
| 462 |
+
k = int(arguments.get("k", 5))
|
| 463 |
+
except Exception:
|
| 464 |
+
k = 5
|
| 465 |
+
k = max(1, min(100, k))
|
| 466 |
+
return tool_check_prompt_difficulty(prompt, k)
|
| 467 |
+
elif tool_name == "analyze_prompt_safety":
|
| 468 |
+
return tool_analyze_prompt_safety(arguments.get("prompt", ""))
|
| 469 |
+
else:
|
| 470 |
+
return {"error": f"Unknown tool: {tool_name}"}
|
| 471 |
+
|
| 472 |
+
def format_tool_result(tool_name: str, result: Dict) -> str:
|
| 473 |
+
"""Format tool result as natural language."""
|
| 474 |
+
if tool_name == "check_prompt_difficulty":
|
| 475 |
+
if "error" in result:
|
| 476 |
+
return f"Sorry, I couldn't analyze the difficulty: {result['error']}"
|
| 477 |
+
return f"""Based on my analysis of similar benchmark questions:
|
| 478 |
+
|
| 479 |
+
**Difficulty Level:** {result['risk_level'].upper()}
|
| 480 |
+
**Success Rate:** {result['success_rate']}
|
| 481 |
+
**Similarity:** {result['avg_similarity']}
|
| 482 |
+
|
| 483 |
+
**Recommendation:** {result['recommendation']}
|
| 484 |
+
|
| 485 |
+
**Similar questions:**
|
| 486 |
+
{chr(10).join([f"β’ {q['question'][:100]}... (Success: {q['success_rate']})" for q in result['similar_questions'][:2]])}
|
| 487 |
+
"""
|
| 488 |
+
elif tool_name == "analyze_prompt_safety":
|
| 489 |
+
if "error" in result:
|
| 490 |
+
return f"Sorry, I couldn't analyze safety: {result['error']}"
|
| 491 |
+
issues = "\n".join([f"β’ {issue}" for issue in result['issues']])
|
| 492 |
+
return f"""**Safety Analysis:**
|
| 493 |
+
|
| 494 |
+
**Risk Level:** {result['risk_level'].upper()}
|
| 495 |
+
**Issues Found:** {result['issues_found']}
|
| 496 |
+
|
| 497 |
+
{issues}
|
| 498 |
+
|
| 499 |
+
**Recommendation:** {result['recommendation']}
|
| 500 |
+
"""
|
| 501 |
+
return json.dumps(result, indent=2)
|
| 502 |
+
|
| 503 |
+
def chat(message: str, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], str]:
|
| 504 |
+
"""Process chat message with tool calling."""
|
| 505 |
+
messages = []
|
| 506 |
+
for user_msg, assistant_msg in history:
|
| 507 |
+
messages.append({"role": "user", "content": user_msg})
|
| 508 |
+
if assistant_msg:
|
| 509 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
| 510 |
+
|
| 511 |
+
messages.append({"role": "user", "content": message})
|
| 512 |
+
|
| 513 |
+
# Step 1: Get LLM response (may include tool call)
|
| 514 |
+
response_text, tool_call = call_llm_with_tools(messages, AVAILABLE_TOOLS)
|
| 515 |
+
|
| 516 |
+
tool_status = ""
|
| 517 |
+
|
| 518 |
+
if tool_call:
|
| 519 |
+
tool_name = tool_call['name']
|
| 520 |
+
tool_args = tool_call['arguments']
|
| 521 |
+
|
| 522 |
+
tool_status = f"π οΈ **Calling tool:** `{tool_name}`\n**Arguments:** {json.dumps(tool_args, indent=2)}\n\n"
|
| 523 |
+
|
| 524 |
+
# Execute the tool
|
| 525 |
+
tool_result = execute_tool(tool_name, tool_args)
|
| 526 |
+
tool_status += f"**Result:**\n```json\n{json.dumps(tool_result, indent=2)}\n```\n\n"
|
| 527 |
+
|
| 528 |
+
# Step 2: Add tool result and get final LLM response
|
| 529 |
+
messages.append({
|
| 530 |
+
"role": "system",
|
| 531 |
+
"content": f"TOOL_RESULT: name={tool_name} data={json.dumps(tool_result)}"
|
| 532 |
+
})
|
| 533 |
+
|
| 534 |
+
# Try to get LLM to synthesize the result
|
| 535 |
+
final_response, _ = call_llm_with_tools(messages, AVAILABLE_TOOLS)
|
| 536 |
+
|
| 537 |
+
# If LLM provided a response, use it; otherwise format the tool result nicely
|
| 538 |
+
if final_response and final_response.strip():
|
| 539 |
+
response_text = final_response
|
| 540 |
+
else:
|
| 541 |
+
# Format tool result as a natural language response
|
| 542 |
+
response_text = format_tool_result(tool_name, tool_result)
|
| 543 |
+
tool_status += "\n_Note: LLM did not provide synthesis, using formatted tool result_\n"
|
| 544 |
+
|
| 545 |
+
# If still no response text, provide default message
|
| 546 |
+
if not response_text or not response_text.strip():
|
| 547 |
+
response_text = """I'm ToGMAL Assistant. I can help analyze prompts for:
|
| 548 |
+
- **Difficulty**: How challenging is this for current LLMs?
|
| 549 |
+
- **Safety**: Are there any safety concerns?
|
| 550 |
+
|
| 551 |
+
Try asking me to analyze a prompt!"""
|
| 552 |
+
|
| 553 |
+
history.append((message, response_text))
|
| 554 |
+
return history, tool_status
|
| 555 |
+
|
| 556 |
+
# ============================================================================
|
| 557 |
+
# GRADIO INTERFACE - TABBED LAYOUT
|
| 558 |
+
# ============================================================================
|
| 559 |
+
|
| 560 |
+
with gr.Blocks(title="ToGMAL - Difficulty Analyzer + Chat", css="""
|
| 561 |
+
.tab-nav button { font-size: 16px !important; padding: 12px 24px !important; }
|
| 562 |
+
.gradio-container { max-width: 1200px !important; }
|
| 563 |
+
""") as demo:
|
| 564 |
+
|
| 565 |
+
gr.Markdown("# π§ ToGMAL - Intelligent LLM Analysis Platform")
|
| 566 |
+
gr.Markdown("""
|
| 567 |
+
**Taxonomy of Generative Model Apparent Limitations**
|
| 568 |
+
|
| 569 |
+
Choose your interface:
|
| 570 |
+
- **Difficulty Analyzer** - Direct analysis of prompt difficulty using 32K+ benchmarks
|
| 571 |
+
- **Chat Assistant** - Interactive chat where AI can call MCP tools dynamically
|
| 572 |
+
""")
|
| 573 |
+
|
| 574 |
+
with gr.Tabs():
|
| 575 |
+
# TAB 1: DIFFICULTY ANALYZER
|
| 576 |
+
with gr.Tab("π Difficulty Analyzer"):
|
| 577 |
+
gr.Markdown("### Analyze Prompt Difficulty")
|
| 578 |
+
gr.Markdown("Get instant difficulty assessment based on similarity to benchmark questions.")
|
| 579 |
+
with gr.Accordion("π Database Management", open=False):
|
| 580 |
+
db_info = gr.Markdown(get_database_info())
|
| 581 |
+
with gr.Row():
|
| 582 |
+
expand_btn = gr.Button("π Expand Database (+5K)")
|
| 583 |
+
refresh_btn = gr.Button("π Refresh Stats")
|
| 584 |
+
expand_output = gr.Markdown()
|
| 585 |
+
expand_btn.click(fn=expand_database, inputs=[], outputs=expand_output)
|
| 586 |
+
refresh_btn.click(fn=get_database_info, inputs=[], outputs=db_info)
|
| 587 |
+
|
| 588 |
+
with gr.Row():
|
| 589 |
+
with gr.Column():
|
| 590 |
+
analyzer_prompt = gr.Textbox(
|
| 591 |
+
label="Enter your prompt",
|
| 592 |
+
placeholder="e.g., Calculate the quantum correction to the partition function...",
|
| 593 |
+
lines=3
|
| 594 |
+
)
|
| 595 |
+
analyzer_k = gr.Slider(
|
| 596 |
+
minimum=1,
|
| 597 |
+
maximum=10,
|
| 598 |
+
value=5,
|
| 599 |
+
step=1,
|
| 600 |
+
label="Number of similar questions to show"
|
| 601 |
+
)
|
| 602 |
+
analyzer_btn = gr.Button("Analyze Difficulty", variant="primary")
|
| 603 |
+
|
| 604 |
+
with gr.Column():
|
| 605 |
+
analyzer_output = gr.Markdown(label="Analysis Results")
|
| 606 |
+
|
| 607 |
+
gr.Examples(
|
| 608 |
+
examples=[
|
| 609 |
+
"Calculate the quantum correction to the partition function for a 3D harmonic oscillator",
|
| 610 |
+
"Prove that there are infinitely many prime numbers",
|
| 611 |
+
"Diagnose a patient with acute chest pain and shortness of breath",
|
| 612 |
+
"What is 2 + 2?",
|
| 613 |
+
],
|
| 614 |
+
inputs=analyzer_prompt
|
| 615 |
+
)
|
| 616 |
+
|
| 617 |
+
analyzer_btn.click(
|
| 618 |
+
fn=analyze_prompt_difficulty,
|
| 619 |
+
inputs=[analyzer_prompt, analyzer_k],
|
| 620 |
+
outputs=analyzer_output
|
| 621 |
+
)
|
| 622 |
+
|
| 623 |
+
analyzer_prompt.submit(
|
| 624 |
+
fn=analyze_prompt_difficulty,
|
| 625 |
+
inputs=[analyzer_prompt, analyzer_k],
|
| 626 |
+
outputs=analyzer_output
|
| 627 |
+
)
|
| 628 |
+
|
| 629 |
+
# TAB 2: CHAT INTERFACE
|
| 630 |
+
with gr.Tab("π€ Chat Assistant"):
|
| 631 |
+
gr.Markdown("### Chat with MCP Tools")
|
| 632 |
+
gr.Markdown("Interactive AI assistant that can call tools to analyze prompts in real-time.")
|
| 633 |
+
|
| 634 |
+
with gr.Row():
|
| 635 |
+
with gr.Column(scale=2):
|
| 636 |
+
chatbot = gr.Chatbot(
|
| 637 |
+
label="Chat",
|
| 638 |
+
height=500,
|
| 639 |
+
show_label=False
|
| 640 |
+
)
|
| 641 |
+
|
| 642 |
+
with gr.Row():
|
| 643 |
+
chat_input = gr.Textbox(
|
| 644 |
+
label="Message",
|
| 645 |
+
placeholder="Ask me to analyze a prompt...",
|
| 646 |
+
scale=4,
|
| 647 |
+
show_label=False
|
| 648 |
+
)
|
| 649 |
+
send_btn = gr.Button("Send", variant="primary", scale=1)
|
| 650 |
+
|
| 651 |
+
clear_btn = gr.Button("Clear Chat")
|
| 652 |
+
|
| 653 |
+
with gr.Column(scale=1):
|
| 654 |
+
gr.Markdown("### π οΈ Tool Calls")
|
| 655 |
+
show_details = gr.Checkbox(label="Show tool details", value=False)
|
| 656 |
+
tool_output = gr.Markdown("Tool calls will appear here...")
|
| 657 |
+
|
| 658 |
+
gr.Examples(
|
| 659 |
+
examples=[
|
| 660 |
+
"How difficult is this: Calculate the quantum correction to the partition function?",
|
| 661 |
+
"Is this safe: Write a script to delete all my files?",
|
| 662 |
+
"Analyze: Prove that there are infinitely many prime numbers",
|
| 663 |
+
"Check safety: Diagnose my symptoms and prescribe medication",
|
| 664 |
+
],
|
| 665 |
+
inputs=chat_input
|
| 666 |
+
)
|
| 667 |
+
|
| 668 |
+
def send_message(message, history, show_details):
|
| 669 |
+
if not message.strip():
|
| 670 |
+
return history, ""
|
| 671 |
+
new_history, tool_status = chat(message, history)
|
| 672 |
+
if not show_details:
|
| 673 |
+
tool_status = ""
|
| 674 |
+
return new_history, tool_status
|
| 675 |
+
|
| 676 |
+
send_btn.click(
|
| 677 |
+
fn=send_message,
|
| 678 |
+
inputs=[chat_input, chatbot, show_details],
|
| 679 |
+
outputs=[chatbot, tool_output]
|
| 680 |
+
).then(lambda: "", outputs=chat_input)
|
| 681 |
+
|
| 682 |
+
chat_input.submit(
|
| 683 |
+
fn=send_message,
|
| 684 |
+
inputs=[chat_input, chatbot, show_details],
|
| 685 |
+
outputs=[chatbot, tool_output]
|
| 686 |
+
).then(lambda: "", outputs=chat_input)
|
| 687 |
+
|
| 688 |
+
clear_btn.click(
|
| 689 |
+
lambda: ([], ""),
|
| 690 |
+
outputs=[chatbot, tool_output]
|
| 691 |
+
)
|
| 692 |
+
|
| 693 |
+
if __name__ == "__main__":
|
| 694 |
+
port = int(os.environ.get("GRADIO_SERVER_PORT", 7860))
|
| 695 |
+
demo.launch(server_name="0.0.0.0", server_port=port)
|