Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,160 +1,150 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
-
from
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
try:
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
return
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
def train_model(architecture_size, api_key, repo_name, push_to_hub):
|
| 26 |
-
# Map architecture size to model name
|
| 27 |
-
model_name_mapping = {
|
| 28 |
-
"Small": "distilgpt2",
|
| 29 |
-
"Medium": "gpt2",
|
| 30 |
-
"Large": "gpt2-medium",
|
| 31 |
}
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
if not repo_name or not repo_name.strip():
|
| 43 |
-
return "β Error: You must provide a repository name if pushing to hub is selected."
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
model.resize_token_embeddings(len(tokenizer))
|
| 61 |
-
|
| 62 |
-
# Training args
|
| 63 |
-
output_dir = "./results"
|
| 64 |
-
training_args = TrainingArguments(
|
| 65 |
-
output_dir=output_dir,
|
| 66 |
-
num_train_epochs=1,
|
| 67 |
-
per_device_train_batch_size=4,
|
| 68 |
-
save_steps=500,
|
| 69 |
-
save_total_limit=1,
|
| 70 |
-
logging_steps=250,
|
| 71 |
-
learning_rate=5e-5,
|
| 72 |
-
weight_decay=0.01,
|
| 73 |
-
push_to_hub=push_to_hub,
|
| 74 |
-
hub_model_id=repo_name if push_to_hub else None,
|
| 75 |
-
hub_token=api_key if push_to_hub else None,
|
| 76 |
-
fp16=torch.cuda.is_available(),
|
| 77 |
-
)
|
| 78 |
-
|
| 79 |
-
# Data collator
|
| 80 |
-
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
| 81 |
-
|
| 82 |
-
# Trainer
|
| 83 |
-
trainer = Trainer(
|
| 84 |
-
model=model,
|
| 85 |
-
args=training_args,
|
| 86 |
-
train_dataset=tokenized_datasets,
|
| 87 |
-
data_collator=data_collator,
|
| 88 |
-
)
|
| 89 |
-
|
| 90 |
-
# Train
|
| 91 |
-
trainer.train()
|
| 92 |
-
|
| 93 |
-
# Save locally
|
| 94 |
-
trainer.save_model(output_dir)
|
| 95 |
-
|
| 96 |
-
# Evaluate
|
| 97 |
-
eval_results = trainer.evaluate()
|
| 98 |
-
eval_loss = eval_results.get('eval_loss', 'N/A')
|
| 99 |
-
|
| 100 |
-
# Push to hub if selected
|
| 101 |
-
if push_to_hub:
|
| 102 |
-
trainer.push_to_hub()
|
| 103 |
-
hub_msg = f"β
Model pushed to Hugging Face Hub: {repo_name}"
|
| 104 |
-
else:
|
| 105 |
-
hub_msg = "βΉοΈ Model saved locally at ./results (not pushed to hub)."
|
| 106 |
-
|
| 107 |
-
return f"""β
Training Complete!
|
| 108 |
-
- Device: {device_msg}
|
| 109 |
-
- Eval Loss: {eval_loss}
|
| 110 |
-
- {hub_msg}
|
| 111 |
-
"""
|
| 112 |
-
|
| 113 |
-
except Exception as e:
|
| 114 |
-
return f"β Training Error: {str(e)}"
|
| 115 |
-
|
| 116 |
-
# ----------------------------- Gradio Interface ----------------------------- #
|
| 117 |
-
|
| 118 |
-
with gr.Blocks(title="LLM Builder - Gradio") as demo:
|
| 119 |
-
gr.Markdown("# π€ LLM Builder")
|
| 120 |
-
gr.Markdown("### 1. Select Model Architecture")
|
| 121 |
-
|
| 122 |
-
architecture_size = gr.Dropdown(
|
| 123 |
-
choices=["Small", "Medium", "Large"],
|
| 124 |
-
value="Small",
|
| 125 |
-
label="Choose Model Size",
|
| 126 |
-
info="Select the size of the model. Larger models have more parameters."
|
| 127 |
)
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
api_key = gr.Textbox(
|
| 134 |
-
label="Hugging Face Hub API Key",
|
| 135 |
-
type="password",
|
| 136 |
-
placeholder="hf_...",
|
| 137 |
-
info="Required only if pushing to hub."
|
| 138 |
-
)
|
| 139 |
-
repo_name = gr.Textbox(
|
| 140 |
-
label="Repository Name",
|
| 141 |
-
placeholder="your-username/your-model-name",
|
| 142 |
-
info="Required only if pushing to hub."
|
| 143 |
-
)
|
| 144 |
-
push_to_hub = gr.Checkbox(
|
| 145 |
-
label="Push to Hugging Face Hub?",
|
| 146 |
-
value=False
|
| 147 |
-
)
|
| 148 |
-
|
| 149 |
-
train_btn = gr.Button("π Start Training", variant="primary")
|
| 150 |
-
output = gr.Textbox(label="Training Output", placeholder="Training logs and results will appear here...", lines=10)
|
| 151 |
-
|
| 152 |
-
train_btn.click(
|
| 153 |
-
fn=train_model,
|
| 154 |
-
inputs=[architecture_size, api_key, repo_name, push_to_hub],
|
| 155 |
-
outputs=output
|
| 156 |
)
|
| 157 |
|
| 158 |
-
|
| 159 |
-
if __name__ == "__main__":
|
| 160 |
-
demo.launch()
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
import gradio as gr
|
| 3 |
+
from backend import verify_hf_token, get_user_runs, get_run_logs, queue_training_run, start_training_if_free
|
| 4 |
+
from utils import ARCH_ANALOGIES, get_auto_hyperparams
|
| 5 |
+
|
| 6 |
+
# ------------------------------ STATE ------------------------------
|
| 7 |
+
user_state = {"user_id": None, "hf_token": "", "current_run_id": None}
|
| 8 |
+
|
| 9 |
+
# ------------------------------ PAGES ------------------------------
|
| 10 |
+
|
| 11 |
+
def page_login(hf_token):
|
| 12 |
+
user_id, msg = verify_hf_token(hf_token)
|
| 13 |
+
if user_id:
|
| 14 |
+
user_state["user_id"] = user_id
|
| 15 |
+
user_state["hf_token"] = hf_token
|
| 16 |
+
return gr.update(visible=False), gr.update(visible=True), msg
|
| 17 |
+
else:
|
| 18 |
+
return gr.update(), gr.update(), msg
|
| 19 |
+
|
| 20 |
+
def page_processes():
|
| 21 |
+
runs = get_user_runs(user_state["user_id"])
|
| 22 |
+
run_list = "\n".join([
|
| 23 |
+
f"π³ Run #{r[0]} | {r[1].upper()} x{r[2]} layers | {r[3]} | {r[4]}"
|
| 24 |
+
for r in runs
|
| 25 |
+
]) or "No runs yet. Start cooking!"
|
| 26 |
+
return run_list
|
| 27 |
+
|
| 28 |
+
def load_run_logs(run_id_str):
|
| 29 |
try:
|
| 30 |
+
run_id = int(run_id_str)
|
| 31 |
+
logs, status = get_run_logs(run_id)
|
| 32 |
+
return f"Status: {status}\n\n{logs}"
|
| 33 |
+
except:
|
| 34 |
+
return "Invalid run ID."
|
| 35 |
+
|
| 36 |
+
def page_architecture_next(arch_type, num_layers):
|
| 37 |
+
analogy = ARCH_ANALOGIES.get(arch_type, "")
|
| 38 |
+
auto_config = get_auto_hyperparams(arch_type, num_layers)
|
| 39 |
+
user_state["arch_config"] = {
|
| 40 |
+
"arch_type": arch_type,
|
| 41 |
+
"num_layers": num_layers,
|
| 42 |
+
"auto_config": auto_config
|
| 43 |
+
}
|
| 44 |
+
return (
|
| 45 |
+
gr.update(visible=False),
|
| 46 |
+
gr.update(visible=True),
|
| 47 |
+
f"π§ {analogy}\n\nAuto-Seasoningβ’ Suggestion:\nLR: {auto_config['learning_rate']} | Epochs: {auto_config['epochs']} | Batch: {auto_config['batch_size']}"
|
| 48 |
+
)
|
| 49 |
|
| 50 |
+
def page_hyperparams_next(lr, epochs, batch_size):
|
| 51 |
+
config = user_state["arch_config"]
|
| 52 |
+
final_config = {
|
| 53 |
+
"arch_type": config["arch_type"],
|
| 54 |
+
"num_layers": config["num_layers"],
|
| 55 |
+
"learning_rate": float(lr) if lr else config["auto_config"]["learning_rate"],
|
| 56 |
+
"epochs": int(epochs) if epochs else config["auto_config"]["epochs"],
|
| 57 |
+
"batch_size": int(batch_size) if batch_size else config["auto_config"]["batch_size"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
}
|
| 59 |
+
run_id = queue_training_run(user_state["user_id"], final_config)
|
| 60 |
+
user_state["current_run_id"] = run_id
|
| 61 |
+
# Try to start if RAM allows
|
| 62 |
+
can_start = start_training_if_free()
|
| 63 |
+
status = "queued. Waiting for available stove π₯..." if not can_start else "starting..."
|
| 64 |
+
return (
|
| 65 |
+
gr.update(visible=False),
|
| 66 |
+
gr.update(visible=True),
|
| 67 |
+
f"β
Run #{run_id} {status}\nCheck 'Your Processes' for logs!"
|
| 68 |
+
)
|
| 69 |
|
| 70 |
+
# ------------------------------ UI ------------------------------
|
| 71 |
+
|
| 72 |
+
with gr.Blocks(title="LLM Kitchen π³") as demo:
|
| 73 |
+
gr.Markdown("# π³ Welcome to LLM Kitchen")
|
| 74 |
+
gr.Markdown("### Cook your own language model β from scratch!")
|
| 75 |
+
|
| 76 |
+
# ---- PAGE 1: LOGIN ----
|
| 77 |
+
with gr.Group() as page_login_ui:
|
| 78 |
+
gr.Markdown("### π Step 1: Login with Hugging Face Token")
|
| 79 |
+
token_input = gr.Textbox(label="HF Token (starts with 'hf_')", type="password")
|
| 80 |
+
login_btn = gr.Button("Login to Kitchen", variant="primary")
|
| 81 |
+
login_msg = gr.Markdown()
|
| 82 |
+
|
| 83 |
+
# ---- PAGE 2: PROCESSES ----
|
| 84 |
+
with gr.Group(visible=False) as page_processes_ui:
|
| 85 |
+
gr.Markdown("### π§βπ³ Your Processes")
|
| 86 |
+
refresh_btn = gr.Button("Refresh List")
|
| 87 |
+
runs_display = gr.Textbox(label="Your Training Runs", lines=8)
|
| 88 |
+
run_id_input = gr.Textbox(label="Enter Run ID to View Logs")
|
| 89 |
+
view_logs_btn = gr.Button("View Logs")
|
| 90 |
+
logs_display = gr.Textbox(label="Training Logs", lines=10)
|
| 91 |
+
new_run_btn = gr.Button("β Start New Process", variant="primary")
|
| 92 |
+
|
| 93 |
+
# ---- PAGE 3: ARCHITECTURE ----
|
| 94 |
+
with gr.Group(visible=False) as page_arch_ui:
|
| 95 |
+
gr.Markdown("### ποΈ Step 2: Choose Your Architecture")
|
| 96 |
+
arch_dropdown = gr.Dropdown(["cnn", "rnn", "transformer"], label="Architecture Type")
|
| 97 |
+
layers_slider = gr.Slider(1, 16, value=4, step=1, label="Number of Layers (Think: # of sauce reductions)")
|
| 98 |
+
arch_next_btn = gr.Button("Next β Hyperparameters")
|
| 99 |
+
arch_analogy = gr.Markdown()
|
| 100 |
+
|
| 101 |
+
# ---- PAGE 4: HYPERPARAMETERS ----
|
| 102 |
+
with gr.Group(visible=False) as page_hyper_ui:
|
| 103 |
+
gr.Markdown("### π§ Step 3: Season Your Model (Hyperparameters)")
|
| 104 |
+
gr.Markdown("Use Auto-Seasoningβ’ or customize manually")
|
| 105 |
+
lr_input = gr.Number(label="Learning Rate (Saltiness)")
|
| 106 |
+
epochs_input = gr.Number(label="Epochs (Simmer Time)", precision=0)
|
| 107 |
+
batch_input = gr.Number(label="Batch Size (Spoon Size)", precision=0)
|
| 108 |
+
hyper_next_btn = gr.Button("Start Cooking! π²")
|
| 109 |
+
|
| 110 |
+
# ---- PAGE 5: TRAINING STARTED ----
|
| 111 |
+
with gr.Group(visible=False) as page_train_ui:
|
| 112 |
+
train_status = gr.Markdown("Starting your training run...")
|
| 113 |
+
|
| 114 |
+
# ------------------------------ EVENTS ------------------------------
|
| 115 |
+
|
| 116 |
+
login_btn.click(
|
| 117 |
+
page_login,
|
| 118 |
+
inputs=token_input,
|
| 119 |
+
outputs=[page_login_ui, page_processes_ui, login_msg]
|
| 120 |
+
)
|
| 121 |
|
| 122 |
+
refresh_btn.click(
|
| 123 |
+
page_processes,
|
| 124 |
+
outputs=runs_display
|
| 125 |
+
)
|
|
|
|
|
|
|
| 126 |
|
| 127 |
+
view_logs_btn.click(
|
| 128 |
+
load_run_logs,
|
| 129 |
+
inputs=run_id_input,
|
| 130 |
+
outputs=logs_display
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
new_run_btn.click(
|
| 134 |
+
lambda: (gr.update(visible=False), gr.update(visible=True), ""),
|
| 135 |
+
outputs=[page_processes_ui, page_arch_ui, arch_analogy]
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
arch_next_btn.click(
|
| 139 |
+
page_architecture_next,
|
| 140 |
+
inputs=[arch_dropdown, layers_slider],
|
| 141 |
+
outputs=[page_arch_ui, page_hyper_ui, arch_analogy]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
)
|
| 143 |
|
| 144 |
+
hyper_next_btn.click(
|
| 145 |
+
page_hyperparams_next,
|
| 146 |
+
inputs=[lr_input, epochs_input, batch_input],
|
| 147 |
+
outputs=[page_hyper_ui, page_train_ui, train_status]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
)
|
| 149 |
|
| 150 |
+
demo.queue().launch()
|
|
|
|
|
|