Spaces:
Sleeping
Sleeping
Update backend.py
Browse files- backend.py +110 -101
backend.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# backend.py β PARALLEL PROCESSING VERSION
|
| 2 |
import sqlite3
|
| 3 |
import threading
|
| 4 |
import time
|
|
@@ -11,24 +11,42 @@ from transformers import AutoTokenizer
|
|
| 11 |
import psutil
|
| 12 |
import os
|
| 13 |
import shutil
|
|
|
|
| 14 |
|
| 15 |
DB_PATH = "llm_kitchen.db"
|
| 16 |
training_queue = []
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
# --- CONSTANTS ---
|
| 22 |
-
RUN_TIMEOUT = 48 * 3600 # 48 hours
|
| 23 |
MAX_RAM_PER_RUN_GB = 1.5
|
| 24 |
|
| 25 |
-
# ------------------------------ DATABASE (
|
|
|
|
| 26 |
def init_db():
|
| 27 |
conn = sqlite3.connect(DB_PATH, check_same_thread=False)
|
| 28 |
cursor = conn.cursor()
|
| 29 |
cursor.executescript("""
|
| 30 |
-
CREATE TABLE IF NOT EXISTS users (
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
""")
|
| 33 |
conn.close()
|
| 34 |
|
|
@@ -44,111 +62,96 @@ def db_query(query, params=()):
|
|
| 44 |
conn.close()
|
| 45 |
return res, last_id
|
| 46 |
|
| 47 |
-
def
|
| 48 |
-
rows, _ = db_query("SELECT id FROM users WHERE
|
| 49 |
-
return rows[0]
|
| 50 |
-
|
| 51 |
-
def create_user(hf_token):
|
| 52 |
-
_, user_id = db_query("INSERT INTO users (hf_token) VALUES (?)", (hf_token,))
|
| 53 |
-
return user_id
|
| 54 |
-
|
| 55 |
-
def create_training_run(user_id, config):
|
| 56 |
-
_, run_id = db_query("INSERT INTO training_runs (user_id, arch_type, num_layers, learning_rate, epochs, batch_size) VALUES (?, ?, ?, ?, ?, ?)", (user_id, config['arch_type'], config['num_layers'], config['learning_rate'], config['epochs'], config['batch_size']))
|
| 57 |
-
return run_id
|
| 58 |
-
|
| 59 |
-
def get_user_runs(user_id):
|
| 60 |
-
rows, _ = db_query("SELECT id, arch_type, num_layers, status, started_at FROM training_runs WHERE user_id = ? ORDER BY id DESC", (user_id,))
|
| 61 |
-
return rows
|
| 62 |
|
| 63 |
-
|
| 64 |
-
rows, _ = db_query("SELECT logs, status FROM training_runs WHERE id = ?", (run_id,))
|
| 65 |
-
return rows[0] if rows else ("", "unknown")
|
| 66 |
-
|
| 67 |
-
def update_run_status(run_id, status):
|
| 68 |
-
if status == 'running':
|
| 69 |
-
db_query("UPDATE training_runs SET status = ?, started_at = CURRENT_TIMESTAMP WHERE id = ?", (status, run_id))
|
| 70 |
-
elif status in ['completed', 'failed', 'timeout']:
|
| 71 |
-
db_query("UPDATE training_runs SET status = ?, completed_at = CURRENT_TIMESTAMP WHERE id = ?", (status, run_id))
|
| 72 |
-
else:
|
| 73 |
-
db_query("UPDATE training_runs SET status = ? WHERE id = ?", (status, run_id))
|
| 74 |
|
| 75 |
-
def
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
user_id
|
| 87 |
-
|
| 88 |
-
user_id = create_user(token)
|
| 89 |
-
return user_id, "Welcome to the LLM Kitchen, Chef! π³ Your apron is ready."
|
| 90 |
-
return user_id, "Welcome back, Chef! π¨βπ³ Your last dish is still warm."
|
| 91 |
-
except Exception as e:
|
| 92 |
-
return None, f"Invalid token. Please try again. ({str(e)})"
|
| 93 |
|
| 94 |
-
# ------------------------------
|
| 95 |
|
| 96 |
def ram_available():
|
| 97 |
return (psutil.virtual_memory().available / (1024**3)) >= MAX_RAM_PER_RUN_GB
|
| 98 |
|
| 99 |
def queue_training_run(user_id, config):
|
| 100 |
-
run_id =
|
| 101 |
training_queue.append({"run_id": run_id, "user_id": user_id, **config})
|
|
|
|
|
|
|
| 102 |
return run_id
|
| 103 |
|
| 104 |
def start_training_if_free():
|
| 105 |
-
"""
|
| 106 |
-
The new scheduler. Tries to start as many jobs as possible from the queue
|
| 107 |
-
based on available RAM and the one-run-per-user constraint.
|
| 108 |
-
"""
|
| 109 |
with scheduler_lock:
|
| 110 |
-
# Iterate through a copy of the queue as we might modify it
|
| 111 |
for job in list(training_queue):
|
| 112 |
-
# 1. Check for global resource constraint (RAM)
|
| 113 |
if not ram_available():
|
| 114 |
log_update("MemoryWarning: Not enough RAM for new runs. Waiting.", -1)
|
| 115 |
-
break
|
| 116 |
-
|
| 117 |
-
# 2. Check for per-user constraint
|
| 118 |
if job["user_id"] in active_users:
|
| 119 |
-
continue
|
| 120 |
-
|
| 121 |
-
# --- If we get here, we can start the job ---
|
| 122 |
log_update(f"Scheduler: Starting run #{job['run_id']} for user #{job['user_id']}", -1)
|
| 123 |
-
|
| 124 |
-
# Update state to reflect the new running job
|
| 125 |
active_runs.add(job["run_id"])
|
| 126 |
active_users.add(job["user_id"])
|
| 127 |
training_queue.remove(job)
|
| 128 |
-
|
| 129 |
-
# Update database and start the training thread
|
| 130 |
update_run_status(job["run_id"], "running")
|
| 131 |
log_update("π³ Starting kitchen process...", job["run_id"])
|
| 132 |
-
|
| 133 |
thread = threading.Thread(target=run_training_job, args=(job,))
|
| 134 |
thread.start()
|
| 135 |
threading.Timer(RUN_TIMEOUT, kill_run_timeout, args=[job]).start()
|
| 136 |
|
| 137 |
def kill_run_timeout(job):
|
| 138 |
-
run_id = job["run_id"]
|
| 139 |
-
user_id = job["user_id"]
|
| 140 |
with scheduler_lock:
|
| 141 |
if run_id in active_runs:
|
| 142 |
-
log_update(f"Run {run_id}: π₯ 48-HOUR TIMEOUT
|
| 143 |
update_run_status(run_id, "timeout")
|
| 144 |
-
# Free up resources
|
| 145 |
active_runs.discard(run_id)
|
| 146 |
active_users.discard(user_id)
|
| 147 |
-
# Try to schedule a new job now that resources are free
|
| 148 |
start_training_if_free()
|
| 149 |
|
| 150 |
-
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
class CNNLanguageModel(nn.Module):
|
| 153 |
def __init__(self, vocab_size, embed_dim=128, num_layers=4):
|
| 154 |
super().__init__()
|
|
@@ -164,6 +167,7 @@ class CNNLanguageModel(nn.Module):
|
|
| 164 |
logits = self.fc(x)
|
| 165 |
loss = nn.CrossEntropyLoss()(logits.view(-1, logits.size(-1)), labels.view(-1)) if labels is not None else None
|
| 166 |
return {"loss": loss, "logits": logits}
|
|
|
|
| 167 |
class RNNLanguageModel(nn.Module):
|
| 168 |
def __init__(self, vocab_size, embed_dim=128, hidden_dim=256, num_layers=2):
|
| 169 |
super().__init__()
|
|
@@ -176,6 +180,7 @@ class RNNLanguageModel(nn.Module):
|
|
| 176 |
logits = self.fc(output)
|
| 177 |
loss = nn.CrossEntropyLoss()(logits.view(-1, logits.size(-1)), labels.view(-1)) if labels is not None else None
|
| 178 |
return {"loss": loss, "logits": logits}
|
|
|
|
| 179 |
class TransformerLanguageModel(nn.Module):
|
| 180 |
def __init__(self, vocab_size, embed_dim=128, num_heads=4, num_layers=3):
|
| 181 |
super().__init__()
|
|
@@ -189,10 +194,11 @@ class TransformerLanguageModel(nn.Module):
|
|
| 189 |
logits = self.fc(x)
|
| 190 |
loss = nn.CrossEntropyLoss()(logits.view(-1, logits.size(-1)), labels.view(-1)) if labels is not None else None
|
| 191 |
return {"loss": loss, "logits": logits}
|
|
|
|
| 192 |
def get_model(arch_type, vocab_size, num_layers):
|
| 193 |
models = {"cnn": CNNLanguageModel, "rnn": RNNLanguageModel, "transformer": TransformerLanguageModel}
|
| 194 |
-
if arch_type not in models: raise ValueError(f"Unknown arch: {arch_type}")
|
| 195 |
return models[arch_type](vocab_size, num_layers=num_layers)
|
|
|
|
| 196 |
class TextDataset(Dataset):
|
| 197 |
def __init__(self, tokenized_data):
|
| 198 |
self.data = tokenized_data["input_ids"]
|
|
@@ -201,23 +207,18 @@ class TextDataset(Dataset):
|
|
| 201 |
def __getitem__(self, idx):
|
| 202 |
return {"input_ids": torch.tensor(self.data[idx]), "labels": torch.tensor(self.data[idx])}
|
| 203 |
|
| 204 |
-
# ------------------------------ TRAINING JOB (Updated `finally` block) -----------------------
|
| 205 |
-
|
| 206 |
def run_training_job(job):
|
| 207 |
-
run_id = job["run_id"]
|
| 208 |
-
user_id = job["user_id"] # Get user_id for state management
|
| 209 |
try:
|
| 210 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 211 |
-
log_update(f"π Device = {device}
|
| 212 |
-
# (The core training logic remains the same)
|
| 213 |
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 214 |
tokenizer.pad_token = tokenizer.eos_token
|
| 215 |
tokenizer_save_path = f"./runs/{run_id}/tokenizer"
|
| 216 |
os.makedirs(tokenizer_save_path, exist_ok=True)
|
| 217 |
tokenizer.save_pretrained(tokenizer_save_path)
|
| 218 |
-
log_update(f"πΎ Tokenizer saved to {tokenizer_save_path}", run_id)
|
| 219 |
model = get_model(job["arch_type"], len(tokenizer), job["num_layers"]).to(device)
|
| 220 |
-
log_update(f"π§± Model
|
| 221 |
dataset = load_dataset("voidful/reasoning_gemini_300k", split="train[:5000]")
|
| 222 |
tokenized_dataset = dataset.map(lambda ex: tokenizer([q + " " + a for q, a in zip(ex["message"], ex["answer"])], truncation=True, padding="max_length", max_length=128), batched=True, remove_columns=dataset.column_names)
|
| 223 |
train_loader = DataLoader(TextDataset(tokenized_dataset), batch_size=job["batch_size"], shuffle=True)
|
|
@@ -239,33 +240,27 @@ def run_training_job(job):
|
|
| 239 |
model_path = f"./runs/{run_id}"
|
| 240 |
os.makedirs(model_path, exist_ok=True)
|
| 241 |
torch.save(model.state_dict(), f"{model_path}/pytorch_model.bin")
|
| 242 |
-
log_update(f"πΎ Model checkpoint saved successfully.", run_id)
|
| 243 |
-
|
| 244 |
except Exception as e:
|
| 245 |
-
|
| 246 |
-
log_update(error_message, run_id)
|
| 247 |
update_run_status(run_id, "failed")
|
| 248 |
else:
|
| 249 |
-
|
| 250 |
-
log_update(success_message, run_id)
|
| 251 |
update_run_status(run_id, "completed")
|
| 252 |
finally:
|
| 253 |
-
# --- NEW: Free up resources and trigger scheduler ---
|
| 254 |
with scheduler_lock:
|
| 255 |
active_runs.discard(run_id)
|
| 256 |
active_users.discard(user_id)
|
| 257 |
start_training_if_free()
|
| 258 |
|
| 259 |
-
# ------------------------------ INFERENCE & PUBLISH (No Changes Needed) --------------------
|
| 260 |
-
# ... (run_inference and publish_run_to_hub are unchanged) ...
|
| 261 |
def run_inference(run_id, prompt):
|
| 262 |
model_path = f"./runs/{run_id}/pytorch_model.bin"
|
| 263 |
tokenizer_path = f"./runs/{run_id}/tokenizer"
|
| 264 |
if not (os.path.exists(model_path) and os.path.exists(tokenizer_path)):
|
| 265 |
-
return "ModelError:
|
| 266 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
|
| 267 |
rows, _ = db_query("SELECT arch_type, num_layers FROM training_runs WHERE id = ?", (run_id,))
|
| 268 |
-
if not rows:
|
|
|
|
| 269 |
arch_type, num_layers = rows[0]
|
| 270 |
model = get_model(arch_type, len(tokenizer), num_layers)
|
| 271 |
model.load_state_dict(torch.load(model_path, map_location="cpu"))
|
|
@@ -277,15 +272,29 @@ def run_inference(run_id, prompt):
|
|
| 277 |
logits = outputs["logits"]
|
| 278 |
generated_ids = torch.argmax(logits, dim=-1)
|
| 279 |
return f"π§βπ³ Model says:\n{tokenizer.decode(generated_ids[0], skip_special_tokens=True)}"
|
|
|
|
|
|
|
|
|
|
| 280 |
def publish_run_to_hub(run_id, hf_token, repo_name, user_description=""):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
local_dir = f"./runs/{run_id}/hub_upload"
|
| 282 |
shutil.rmtree(local_dir, ignore_errors=True)
|
| 283 |
os.makedirs(local_dir, exist_ok=True)
|
|
|
|
| 284 |
shutil.copy(f"./runs/{run_id}/pytorch_model.bin", f"{local_dir}/pytorch_model.bin")
|
| 285 |
shutil.copytree(f"./runs/{run_id}/tokenizer", f"{local_dir}/tokenizer", dirs_exist_ok=True)
|
|
|
|
| 286 |
readme_content = user_description.strip() or f"# Model from LLM Kitchen - Run #{run_id}"
|
| 287 |
-
with open(f"{local_dir}/README.md", "w") as f:
|
|
|
|
|
|
|
| 288 |
api = HfApi()
|
| 289 |
-
repo_url = api.create_repo(repo_id=
|
| 290 |
api.upload_folder(folder_path=local_dir, repo_id=repo_url, token=hf_token)
|
| 291 |
return f"https://huggingface.co/{repo_url}"
|
|
|
|
| 1 |
+
# backend.py β USERNAME/PASSWORD & PARALLEL PROCESSING VERSION
|
| 2 |
import sqlite3
|
| 3 |
import threading
|
| 4 |
import time
|
|
|
|
| 11 |
import psutil
|
| 12 |
import os
|
| 13 |
import shutil
|
| 14 |
+
from werkzeug.security import generate_password_hash, check_password_hash
|
| 15 |
|
| 16 |
DB_PATH = "llm_kitchen.db"
|
| 17 |
training_queue = []
|
| 18 |
+
active_runs = set()
|
| 19 |
+
active_users = set()
|
| 20 |
+
scheduler_lock = threading.Lock()
|
| 21 |
+
RUN_TIMEOUT = 48 * 3600
|
|
|
|
|
|
|
| 22 |
MAX_RAM_PER_RUN_GB = 1.5
|
| 23 |
|
| 24 |
+
# ------------------------------ DATABASE (NEW SCHEMA) ------------------------------
|
| 25 |
+
|
| 26 |
def init_db():
|
| 27 |
conn = sqlite3.connect(DB_PATH, check_same_thread=False)
|
| 28 |
cursor = conn.cursor()
|
| 29 |
cursor.executescript("""
|
| 30 |
+
CREATE TABLE IF NOT EXISTS users (
|
| 31 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 32 |
+
username TEXT UNIQUE NOT NULL,
|
| 33 |
+
password_hash TEXT NOT NULL,
|
| 34 |
+
created_at DATETIME DEFAULT CURRENT_TIMESTAMP
|
| 35 |
+
);
|
| 36 |
+
CREATE TABLE IF NOT EXISTS training_runs (
|
| 37 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 38 |
+
user_id INTEGER NOT NULL,
|
| 39 |
+
arch_type TEXT NOT NULL,
|
| 40 |
+
num_layers INTEGER NOT NULL,
|
| 41 |
+
learning_rate REAL NOT NULL,
|
| 42 |
+
epochs INTEGER NOT NULL,
|
| 43 |
+
batch_size INTEGER NOT NULL,
|
| 44 |
+
status TEXT DEFAULT 'queued',
|
| 45 |
+
logs TEXT DEFAULT '',
|
| 46 |
+
started_at DATETIME,
|
| 47 |
+
completed_at DATETIME,
|
| 48 |
+
FOREIGN KEY (user_id) REFERENCES users(id)
|
| 49 |
+
);
|
| 50 |
""")
|
| 51 |
conn.close()
|
| 52 |
|
|
|
|
| 62 |
conn.close()
|
| 63 |
return res, last_id
|
| 64 |
|
| 65 |
+
def get_user_by_username(username):
|
| 66 |
+
rows, _ = db_query("SELECT id, password_hash FROM users WHERE username = ?", (username,))
|
| 67 |
+
return rows[0] if rows else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
# ------------------------------ NEW AUTHENTICATION ------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
+
def signup_user(username, password):
|
| 72 |
+
if not username or not password:
|
| 73 |
+
return None, "Username and password cannot be empty."
|
| 74 |
+
if get_user_by_username(username):
|
| 75 |
+
return None, "Username already exists. Please choose another."
|
| 76 |
+
|
| 77 |
+
password_hash = generate_password_hash(password)
|
| 78 |
+
_, user_id = db_query("INSERT INTO users (username, password_hash) VALUES (?, ?)", (username, password_hash))
|
| 79 |
+
return user_id, f"Welcome, {username}! Your account is ready. Please log in."
|
| 80 |
|
| 81 |
+
def login_user(username, password):
|
| 82 |
+
user = get_user_by_username(username)
|
| 83 |
+
if user and check_password_hash(user[1], password):
|
| 84 |
+
user_id = user[0]
|
| 85 |
+
return user_id, f"Welcome back, {username}!"
|
| 86 |
+
return None, "Invalid username or password."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
+
# ------------------------------ PARALLEL TRAINING QUEUE ------------------------------
|
| 89 |
|
| 90 |
def ram_available():
|
| 91 |
return (psutil.virtual_memory().available / (1024**3)) >= MAX_RAM_PER_RUN_GB
|
| 92 |
|
| 93 |
def queue_training_run(user_id, config):
|
| 94 |
+
_, run_id = db_query("INSERT INTO training_runs (user_id, arch_type, num_layers, learning_rate, epochs, batch_size) VALUES (?, ?, ?, ?, ?, ?)", (user_id, config['arch_type'], config['num_layers'], config['learning_rate'], config['epochs'], config['batch_size']))
|
| 95 |
training_queue.append({"run_id": run_id, "user_id": user_id, **config})
|
| 96 |
+
# Trigger the scheduler every time a new job is added
|
| 97 |
+
start_training_if_free()
|
| 98 |
return run_id
|
| 99 |
|
| 100 |
def start_training_if_free():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
with scheduler_lock:
|
|
|
|
| 102 |
for job in list(training_queue):
|
|
|
|
| 103 |
if not ram_available():
|
| 104 |
log_update("MemoryWarning: Not enough RAM for new runs. Waiting.", -1)
|
| 105 |
+
break
|
|
|
|
|
|
|
| 106 |
if job["user_id"] in active_users:
|
| 107 |
+
continue
|
| 108 |
+
|
|
|
|
| 109 |
log_update(f"Scheduler: Starting run #{job['run_id']} for user #{job['user_id']}", -1)
|
|
|
|
|
|
|
| 110 |
active_runs.add(job["run_id"])
|
| 111 |
active_users.add(job["user_id"])
|
| 112 |
training_queue.remove(job)
|
| 113 |
+
|
|
|
|
| 114 |
update_run_status(job["run_id"], "running")
|
| 115 |
log_update("π³ Starting kitchen process...", job["run_id"])
|
|
|
|
| 116 |
thread = threading.Thread(target=run_training_job, args=(job,))
|
| 117 |
thread.start()
|
| 118 |
threading.Timer(RUN_TIMEOUT, kill_run_timeout, args=[job]).start()
|
| 119 |
|
| 120 |
def kill_run_timeout(job):
|
| 121 |
+
run_id, user_id = job["run_id"], job["user_id"]
|
|
|
|
| 122 |
with scheduler_lock:
|
| 123 |
if run_id in active_runs:
|
| 124 |
+
log_update(f"Run {run_id}: π₯ 48-HOUR TIMEOUT. Terminating.", run_id)
|
| 125 |
update_run_status(run_id, "timeout")
|
|
|
|
| 126 |
active_runs.discard(run_id)
|
| 127 |
active_users.discard(user_id)
|
|
|
|
| 128 |
start_training_if_free()
|
| 129 |
|
| 130 |
+
def get_user_runs(user_id):
|
| 131 |
+
rows, _ = db_query("SELECT id, arch_type, num_layers, status, started_at FROM training_runs WHERE user_id = ? ORDER BY id DESC", (user_id,))
|
| 132 |
+
return rows
|
| 133 |
+
|
| 134 |
+
def get_run_logs(run_id):
|
| 135 |
+
rows, _ = db_query("SELECT logs, status FROM training_runs WHERE id = ?", (run_id,))
|
| 136 |
+
return rows[0] if rows else ("", "unknown")
|
| 137 |
+
|
| 138 |
+
def update_run_status(run_id, status):
|
| 139 |
+
if status == 'running':
|
| 140 |
+
db_query("UPDATE training_runs SET status = ?, started_at = CURRENT_TIMESTAMP WHERE id = ?", (status, run_id))
|
| 141 |
+
elif status in ['completed', 'failed', 'timeout']:
|
| 142 |
+
db_query("UPDATE training_runs SET status = ?, completed_at = CURRENT_TIMESTAMP WHERE id = ?", (status, run_id))
|
| 143 |
+
else:
|
| 144 |
+
db_query("UPDATE training_runs SET status = ? WHERE id = ?", (status, run_id))
|
| 145 |
+
|
| 146 |
+
def log_update(message, run_id):
|
| 147 |
+
timestamp = time.strftime("%H:%M:%S")
|
| 148 |
+
full_msg = f"[{timestamp}] {message}"
|
| 149 |
+
print(full_msg)
|
| 150 |
+
if run_id > 0:
|
| 151 |
+
db_query("UPDATE training_runs SET logs = logs || ? || ? WHERE id = ?", ('\n', full_msg, run_id))
|
| 152 |
+
|
| 153 |
+
# ------------------------------ MODELS & TRAINING ------------------------------
|
| 154 |
+
|
| 155 |
class CNNLanguageModel(nn.Module):
|
| 156 |
def __init__(self, vocab_size, embed_dim=128, num_layers=4):
|
| 157 |
super().__init__()
|
|
|
|
| 167 |
logits = self.fc(x)
|
| 168 |
loss = nn.CrossEntropyLoss()(logits.view(-1, logits.size(-1)), labels.view(-1)) if labels is not None else None
|
| 169 |
return {"loss": loss, "logits": logits}
|
| 170 |
+
|
| 171 |
class RNNLanguageModel(nn.Module):
|
| 172 |
def __init__(self, vocab_size, embed_dim=128, hidden_dim=256, num_layers=2):
|
| 173 |
super().__init__()
|
|
|
|
| 180 |
logits = self.fc(output)
|
| 181 |
loss = nn.CrossEntropyLoss()(logits.view(-1, logits.size(-1)), labels.view(-1)) if labels is not None else None
|
| 182 |
return {"loss": loss, "logits": logits}
|
| 183 |
+
|
| 184 |
class TransformerLanguageModel(nn.Module):
|
| 185 |
def __init__(self, vocab_size, embed_dim=128, num_heads=4, num_layers=3):
|
| 186 |
super().__init__()
|
|
|
|
| 194 |
logits = self.fc(x)
|
| 195 |
loss = nn.CrossEntropyLoss()(logits.view(-1, logits.size(-1)), labels.view(-1)) if labels is not None else None
|
| 196 |
return {"loss": loss, "logits": logits}
|
| 197 |
+
|
| 198 |
def get_model(arch_type, vocab_size, num_layers):
|
| 199 |
models = {"cnn": CNNLanguageModel, "rnn": RNNLanguageModel, "transformer": TransformerLanguageModel}
|
|
|
|
| 200 |
return models[arch_type](vocab_size, num_layers=num_layers)
|
| 201 |
+
|
| 202 |
class TextDataset(Dataset):
|
| 203 |
def __init__(self, tokenized_data):
|
| 204 |
self.data = tokenized_data["input_ids"]
|
|
|
|
| 207 |
def __getitem__(self, idx):
|
| 208 |
return {"input_ids": torch.tensor(self.data[idx]), "labels": torch.tensor(self.data[idx])}
|
| 209 |
|
|
|
|
|
|
|
| 210 |
def run_training_job(job):
|
| 211 |
+
run_id, user_id = job["run_id"], job["user_id"]
|
|
|
|
| 212 |
try:
|
| 213 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 214 |
+
log_update(f"π Device = {device}", run_id)
|
|
|
|
| 215 |
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 216 |
tokenizer.pad_token = tokenizer.eos_token
|
| 217 |
tokenizer_save_path = f"./runs/{run_id}/tokenizer"
|
| 218 |
os.makedirs(tokenizer_save_path, exist_ok=True)
|
| 219 |
tokenizer.save_pretrained(tokenizer_save_path)
|
|
|
|
| 220 |
model = get_model(job["arch_type"], len(tokenizer), job["num_layers"]).to(device)
|
| 221 |
+
log_update(f"π§± Model: {job['arch_type']} x{job['num_layers']} layers", run_id)
|
| 222 |
dataset = load_dataset("voidful/reasoning_gemini_300k", split="train[:5000]")
|
| 223 |
tokenized_dataset = dataset.map(lambda ex: tokenizer([q + " " + a for q, a in zip(ex["message"], ex["answer"])], truncation=True, padding="max_length", max_length=128), batched=True, remove_columns=dataset.column_names)
|
| 224 |
train_loader = DataLoader(TextDataset(tokenized_dataset), batch_size=job["batch_size"], shuffle=True)
|
|
|
|
| 240 |
model_path = f"./runs/{run_id}"
|
| 241 |
os.makedirs(model_path, exist_ok=True)
|
| 242 |
torch.save(model.state_dict(), f"{model_path}/pytorch_model.bin")
|
|
|
|
|
|
|
| 243 |
except Exception as e:
|
| 244 |
+
log_update(f"π₯ FAILED - {str(e)}", run_id)
|
|
|
|
| 245 |
update_run_status(run_id, "failed")
|
| 246 |
else:
|
| 247 |
+
log_update("π Cooking complete!", run_id)
|
|
|
|
| 248 |
update_run_status(run_id, "completed")
|
| 249 |
finally:
|
|
|
|
| 250 |
with scheduler_lock:
|
| 251 |
active_runs.discard(run_id)
|
| 252 |
active_users.discard(user_id)
|
| 253 |
start_training_if_free()
|
| 254 |
|
|
|
|
|
|
|
| 255 |
def run_inference(run_id, prompt):
|
| 256 |
model_path = f"./runs/{run_id}/pytorch_model.bin"
|
| 257 |
tokenizer_path = f"./runs/{run_id}/tokenizer"
|
| 258 |
if not (os.path.exists(model_path) and os.path.exists(tokenizer_path)):
|
| 259 |
+
return "ModelError: Files not found."
|
| 260 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
|
| 261 |
rows, _ = db_query("SELECT arch_type, num_layers FROM training_runs WHERE id = ?", (run_id,))
|
| 262 |
+
if not rows:
|
| 263 |
+
return "ModelError: Run not found."
|
| 264 |
arch_type, num_layers = rows[0]
|
| 265 |
model = get_model(arch_type, len(tokenizer), num_layers)
|
| 266 |
model.load_state_dict(torch.load(model_path, map_location="cpu"))
|
|
|
|
| 272 |
logits = outputs["logits"]
|
| 273 |
generated_ids = torch.argmax(logits, dim=-1)
|
| 274 |
return f"π§βπ³ Model says:\n{tokenizer.decode(generated_ids[0], skip_special_tokens=True)}"
|
| 275 |
+
|
| 276 |
+
# ------------------------------ PUBLISH (HF Token passed as argument) ------------------------------
|
| 277 |
+
|
| 278 |
def publish_run_to_hub(run_id, hf_token, repo_name, user_description=""):
|
| 279 |
+
try:
|
| 280 |
+
user_info = whoami(token=hf_token)
|
| 281 |
+
hf_username = user_info['name']
|
| 282 |
+
except Exception as e:
|
| 283 |
+
raise ValueError(f"Invalid Hugging Face Token. Error: {e}")
|
| 284 |
+
|
| 285 |
+
final_repo_name = f"{hf_username}/{repo_name}"
|
| 286 |
local_dir = f"./runs/{run_id}/hub_upload"
|
| 287 |
shutil.rmtree(local_dir, ignore_errors=True)
|
| 288 |
os.makedirs(local_dir, exist_ok=True)
|
| 289 |
+
|
| 290 |
shutil.copy(f"./runs/{run_id}/pytorch_model.bin", f"{local_dir}/pytorch_model.bin")
|
| 291 |
shutil.copytree(f"./runs/{run_id}/tokenizer", f"{local_dir}/tokenizer", dirs_exist_ok=True)
|
| 292 |
+
|
| 293 |
readme_content = user_description.strip() or f"# Model from LLM Kitchen - Run #{run_id}"
|
| 294 |
+
with open(f"{local_dir}/README.md", "w") as f:
|
| 295 |
+
f.write(readme_content)
|
| 296 |
+
|
| 297 |
api = HfApi()
|
| 298 |
+
repo_url = api.create_repo(repo_id=final_repo_name, token=hf_token, exist_ok=True).repo_id
|
| 299 |
api.upload_folder(folder_path=local_dir, repo_id=repo_url, token=hf_token)
|
| 300 |
return f"https://huggingface.co/{repo_url}"
|