Spaces:
Runtime error
Runtime error
kmckee95
commited on
Add files via upload
Browse files- full_pipeline.pickle +0 -0
- heartdisease.py +144 -0
- rfc.pickle +0 -0
full_pipeline.pickle
ADDED
|
Binary file (52.1 kB). View file
|
|
|
heartdisease.py
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# import the library
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import seaborn as sns
|
| 5 |
+
from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder
|
| 6 |
+
from sklearn.preprocessing import StandardScaler
|
| 7 |
+
|
| 8 |
+
from sklearn.impute import KNNImputer
|
| 9 |
+
from sklearn.pipeline import Pipeline
|
| 10 |
+
from sklearn.compose import ColumnTransformer
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
from sklearn.linear_model import LogisticRegression
|
| 14 |
+
from sklearn.ensemble import RandomForestClassifier
|
| 15 |
+
from sklearn.ensemble import GradientBoostingClassifier
|
| 16 |
+
|
| 17 |
+
#libraries for model evaluation
|
| 18 |
+
import matplotlib.pyplot as plt
|
| 19 |
+
from sklearn.metrics import accuracy_score
|
| 20 |
+
from sklearn.metrics import plot_confusion_matrix
|
| 21 |
+
from sklearn.metrics import classification_report
|
| 22 |
+
|
| 23 |
+
import warnings
|
| 24 |
+
warnings.filterwarnings('ignore')
|
| 25 |
+
|
| 26 |
+
# read the dataset
|
| 27 |
+
df = pd.read_csv('heart.csv')
|
| 28 |
+
|
| 29 |
+
# get categorical columns
|
| 30 |
+
categorical_cols= df.select_dtypes(include=['object'])
|
| 31 |
+
|
| 32 |
+
# get count of unique values for categorical columns
|
| 33 |
+
for cols in categorical_cols.columns:
|
| 34 |
+
print(cols,':', len(categorical_cols[cols].unique()),'labels')
|
| 35 |
+
|
| 36 |
+
# categorical columns
|
| 37 |
+
cat_col = categorical_cols.columns
|
| 38 |
+
|
| 39 |
+
# numerical column
|
| 40 |
+
num_col = ['Age','RestingBP','Cholesterol','FastingBS','MaxHR','Oldpeak']
|
| 41 |
+
|
| 42 |
+
# define X and y
|
| 43 |
+
X = df.drop(['HeartDisease'],axis=1)
|
| 44 |
+
y = df['HeartDisease']
|
| 45 |
+
|
| 46 |
+
# create a pipeline for preprocessing the dataset
|
| 47 |
+
|
| 48 |
+
num_pipeline = Pipeline([
|
| 49 |
+
('imputer', KNNImputer(n_neighbors=5)),
|
| 50 |
+
('std_scaler', StandardScaler()),
|
| 51 |
+
])
|
| 52 |
+
|
| 53 |
+
num_attribs = num_col
|
| 54 |
+
cat_attribs = cat_col
|
| 55 |
+
|
| 56 |
+
# apply transformation to the numerical and categorical columns
|
| 57 |
+
full_pipeline = ColumnTransformer([
|
| 58 |
+
("num", num_pipeline, num_attribs),
|
| 59 |
+
("cat", OneHotEncoder(), cat_attribs),
|
| 60 |
+
])
|
| 61 |
+
|
| 62 |
+
X = full_pipeline.fit_transform(X)
|
| 63 |
+
|
| 64 |
+
# save preprocessed data
|
| 65 |
+
temp_df = pd.DataFrame(X)
|
| 66 |
+
temp_df.to_csv('processed_data.csv')
|
| 67 |
+
|
| 68 |
+
# Splitting the dataset into the Training set and Test set
|
| 69 |
+
from sklearn.model_selection import train_test_split
|
| 70 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)
|
| 71 |
+
|
| 72 |
+
# count plot for number of heart disease(1)/No heart disease(0)
|
| 73 |
+
import seaborn as sns
|
| 74 |
+
sns.countplot(y_train,palette='OrRd')
|
| 75 |
+
|
| 76 |
+
# create a fresh model based on tuned parameters
|
| 77 |
+
rfc1=RandomForestClassifier(random_state=42, max_features='sqrt', n_estimators= 50, max_depth=7, criterion='gini')
|
| 78 |
+
|
| 79 |
+
rfc1.fit(X_train, y_train)
|
| 80 |
+
|
| 81 |
+
# Predicting the Test set results
|
| 82 |
+
y_pred = rfc1.predict(X_test)
|
| 83 |
+
print('Random forest accuracy_score:',accuracy_score(y_test,y_pred))
|
| 84 |
+
|
| 85 |
+
# Save the Model
|
| 86 |
+
|
| 87 |
+
import pickle
|
| 88 |
+
|
| 89 |
+
# save the random forest model for future use
|
| 90 |
+
pickle.dump(rfc1, open('rfc.pickle', 'wb'))
|
| 91 |
+
|
| 92 |
+
# save the preprocessing pipeline
|
| 93 |
+
pickle.dump(full_pipeline, open('full_pipeline.pickle', 'wb'))
|
| 94 |
+
|
| 95 |
+
# Load the Models for future use
|
| 96 |
+
|
| 97 |
+
rfc_saved = pickle.load(open('rfc.pickle','rb'))
|
| 98 |
+
full_pipeline_saved = pickle.load(open('full_pipeline.pickle','rb'))
|
| 99 |
+
|
| 100 |
+
# Visualization
|
| 101 |
+
|
| 102 |
+
target = df['HeartDisease'].replace([0,1],['Low','High'])
|
| 103 |
+
|
| 104 |
+
data = pd.crosstab(index=df['Sex'],
|
| 105 |
+
columns=target)
|
| 106 |
+
|
| 107 |
+
data.plot(kind='bar',stacked=True)
|
| 108 |
+
plt.show()
|
| 109 |
+
|
| 110 |
+
plt.figure(figsize=(10,5))
|
| 111 |
+
bins=[0,30,50,80]
|
| 112 |
+
sns.countplot(x=pd.cut(df.Age,bins=bins),hue=target,color='r')
|
| 113 |
+
plt.show()
|
| 114 |
+
|
| 115 |
+
plt.figure(figsize=(10,5))
|
| 116 |
+
sns.countplot(x=target,hue=df.ChestPainType)
|
| 117 |
+
plt.xticks(np.arange(2), ['No', 'Yes'])
|
| 118 |
+
plt.show()
|
| 119 |
+
|
| 120 |
+
plt.figure(figsize=(10,5))
|
| 121 |
+
sns.countplot(x=target,hue=df.ExerciseAngina)
|
| 122 |
+
plt.xticks(np.arange(2), ['No', 'Yes'])
|
| 123 |
+
plt.show()
|
| 124 |
+
|
| 125 |
+
# feature importance
|
| 126 |
+
|
| 127 |
+
# get important features used by model
|
| 128 |
+
importances = rfc1.feature_importances_
|
| 129 |
+
feature_names = num_col
|
| 130 |
+
for i in cat_col:
|
| 131 |
+
feature_names = feature_names + [i]*df[i].nunique()
|
| 132 |
+
|
| 133 |
+
import pandas as pd
|
| 134 |
+
|
| 135 |
+
forest_importances = pd.Series(importances, index=feature_names)
|
| 136 |
+
|
| 137 |
+
forest_importances = forest_importances.groupby(level=0).first().sort_values(ascending=False)
|
| 138 |
+
|
| 139 |
+
# plot the features based on their importance in model performance.
|
| 140 |
+
fig, ax = plt.subplots()
|
| 141 |
+
forest_importances.plot.bar()
|
| 142 |
+
ax.set_title("Feature importances using MDI")
|
| 143 |
+
ax.set_ylabel("Mean decrease in impurity")
|
| 144 |
+
fig.tight_layout()
|
rfc.pickle
ADDED
|
Binary file (428 kB). View file
|
|
|