Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from langchain.vectorstores import Chroma
|
| 2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
from transformers import pipeline
|
|
@@ -5,111 +9,76 @@ import torch
|
|
| 5 |
from langchain.llms import HuggingFacePipeline
|
| 6 |
from langchain.embeddings import SentenceTransformerEmbeddings
|
| 7 |
from langchain.chains import RetrievalQA
|
| 8 |
-
from langchain_community.document_loaders import UnstructuredFileLoader
|
| 9 |
-
from langchain.text_splitter import CharacterTextSplitter
|
| 10 |
import streamlit as st
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
return qa_chain
|
| 84 |
-
|
| 85 |
-
st.title("Document Chatbot")
|
| 86 |
-
st.write("Upload a pdf file to get started")
|
| 87 |
-
|
| 88 |
-
uploaded_file = st.file_uploader("Choose a file", type=["pdf"])
|
| 89 |
-
|
| 90 |
-
if uploaded_file is not None:
|
| 91 |
-
qa_chain = main_process(uploaded_file)
|
| 92 |
-
if "messages" not in st.session_state:
|
| 93 |
-
st.session_state.messages = []
|
| 94 |
-
|
| 95 |
-
# Display chat messages from history on app rerun
|
| 96 |
-
for message in st.session_state.messages:
|
| 97 |
-
with st.chat_message(message["role"]):
|
| 98 |
-
st.markdown(message["content"])
|
| 99 |
-
|
| 100 |
-
# Accept user input
|
| 101 |
-
if prompt := st.chat_input("What is up?"):
|
| 102 |
-
# Add user message to chat history
|
| 103 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 104 |
-
# Display user message in chat message container
|
| 105 |
-
with st.chat_message("user"):
|
| 106 |
-
st.markdown(prompt)
|
| 107 |
-
# Get response from chatbot
|
| 108 |
-
with st.chat_message("assitant"):
|
| 109 |
-
response = qa_chain(prompt)
|
| 110 |
-
st.markdown(response)
|
| 111 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
|
|
|
| 1 |
+
# !pip install accelerate
|
| 2 |
+
# !pip install chromadb
|
| 3 |
+
# !pip install "unstructured[all-docs]"
|
| 4 |
+
|
| 5 |
from langchain.vectorstores import Chroma
|
| 6 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 7 |
from transformers import pipeline
|
|
|
|
| 9 |
from langchain.llms import HuggingFacePipeline
|
| 10 |
from langchain.embeddings import SentenceTransformerEmbeddings
|
| 11 |
from langchain.chains import RetrievalQA
|
|
|
|
|
|
|
| 12 |
import streamlit as st
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
embeddings = SentenceTransformerEmbeddings(model_name="multi-qa-mpnet-base-dot-v1")
|
| 16 |
+
persist_directory = "chroma"
|
| 17 |
+
|
| 18 |
+
# Persist the database to disk
|
| 19 |
+
db = Chroma(persist_directory,embeddings)
|
| 20 |
+
|
| 21 |
+
# To save and load the saved vector db (if needed in the future)
|
| 22 |
+
# Persist the database to disk
|
| 23 |
+
# db.persist()
|
| 24 |
+
# db = Chroma(persist_directory="db", embedding_function=embeddings)
|
| 25 |
+
|
| 26 |
+
checkpoint = "MBZUAI/LaMini-Flan-T5-783M"
|
| 27 |
+
|
| 28 |
+
# Initialize the tokenizer and base model for text generation
|
| 29 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
| 30 |
+
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 31 |
+
checkpoint,
|
| 32 |
+
device_map="auto",
|
| 33 |
+
torch_dtype=torch.float32
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
pipe = pipeline(
|
| 39 |
+
'text2text-generation',
|
| 40 |
+
model = base_model,
|
| 41 |
+
tokenizer = tokenizer,
|
| 42 |
+
max_length = 512,
|
| 43 |
+
do_sample = True,
|
| 44 |
+
temperature = 0.3,
|
| 45 |
+
top_p= 0.95
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
# Initialize a local language model pipeline
|
| 50 |
+
local_llm = HuggingFacePipeline(pipeline=pipe)
|
| 51 |
+
# Create a RetrievalQA chain
|
| 52 |
+
qa_chain = RetrievalQA.from_chain_type(
|
| 53 |
+
llm=local_llm,
|
| 54 |
+
chain_type='stuff',
|
| 55 |
+
retriever=db.as_retriever(search_type="similarity", search_kwargs={"k": 2}),
|
| 56 |
+
return_source_documents=True,
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
st.title("Lawyer Bot")
|
| 61 |
+
st.subheader("A chatbot to answer your legal questions trained on IPC")
|
| 62 |
+
if "messages" not in st.session_state:
|
| 63 |
+
st.session_state.messages = []
|
| 64 |
+
|
| 65 |
+
# Display chat messages from history on app rerun
|
| 66 |
+
for message in st.session_state.messages:
|
| 67 |
+
with st.chat_message(message["role"]):
|
| 68 |
+
st.markdown(message["content"])
|
| 69 |
+
|
| 70 |
+
# Accept user input
|
| 71 |
+
if prompt := st.chat_input("What is up?"):
|
| 72 |
+
# Add user message to chat history
|
| 73 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 74 |
+
# Display user message in chat message container
|
| 75 |
+
with st.chat_message("user"):
|
| 76 |
+
st.markdown(prompt)
|
| 77 |
+
# Get response from chatbot
|
| 78 |
+
with st.chat_message("assistant"):
|
| 79 |
+
response = qa_chain(prompt)
|
| 80 |
+
print(response['result'])
|
| 81 |
+
st.markdown(response["result"])
|
| 82 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
| 83 |
+
|
| 84 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|