File size: 10,845 Bytes
51a1e24
 
 
 
 
 
 
89ce9dc
51a1e24
38dac5e
 
60bac87
4a83d65
 
 
 
 
 
 
6bb05d6
 
 
 
 
 
 
 
 
 
60bac87
 
6bb05d6
60bac87
6bb05d6
 
 
60bac87
 
6bb05d6
60bac87
38dac5e
6bb05d6
 
 
 
 
 
 
89ce9dc
38dac5e
6bb05d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51a1e24
 
 
91627f2
6bb05d6
91627f2
6bb05d6
 
89ce9dc
 
 
 
6bb05d6
51a1e24
 
 
 
 
c239fc5
6bb05d6
65cc34c
6bb05d6
38dac5e
51a1e24
 
 
6bb05d6
51a1e24
4a83d65
38dac5e
4a83d65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51a1e24
 
 
 
6bb05d6
51a1e24
4a83d65
51a1e24
 
 
c239fc5
6bb05d6
38dac5e
6bb05d6
4a83d65
51a1e24
6bb05d6
 
 
 
 
 
 
 
 
 
9aee934
89ce9dc
6bb05d6
9aee934
4a83d65
89ce9dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a83d65
89ce9dc
9aee934
4a83d65
 
9aee934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89ce9dc
51a1e24
 
 
 
 
 
 
 
c239fc5
51a1e24
6bb05d6
 
 
51a1e24
4a83d65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51a1e24
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import QwenImageEditPipeline
from diffusers.utils import is_xformers_available
import os
import base64
import json
from huggingface_hub import InferenceClient
import logging
#############################
os.environ.setdefault('GRADIO_ANALYTICS_ENABLED', 'False')
os.environ.setdefault('HF_HUB_DISABLE_TELEMETRY', '1')
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
#############################
def get_caption_language(prompt):
    """Detects if the prompt contains Chinese characters."""
    ranges = [
        ('\u4e00', '\u9fff'),  # CJK Unified Ideographs
    ]
    for char in prompt:
        if any(start <= char <= end for start, end in ranges):
            return 'zh'
    return 'en'
def polish_prompt(original_prompt, system_prompt, hf_token):
    """
    Rewrites the prompt using a Hugging Face InferenceClient.
    Requires user-provided HF token for API access.
    """
    if not hf_token or not hf_token.strip():
        gr.Warning("HF Token is required for prompt rewriting but was not provided!")
        return original_prompt
    client = InferenceClient(
        provider="cerebras",
        api_key=hf_token,
    )
    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": original_prompt}
    ]
    try:
        completion = client.chat.completions.create(
            model="Qwen/Qwen3-235B-A22B-Instruct-2507",
            messages=messages,
            max_tokens=512,
        )
        polished_prompt = completion.choices[0].message.content
        polished_prompt = polished_prompt.strip().replace("\n", " ")
        return polished_prompt
    except Exception as e:
        print(f"Error during Hugging Face API call: {e}")
        gr.Warning("Failed to rewrite prompt. Using original.")
        return original_prompt
SYSTEM_PROMPT_EDIT = '''
# Edit Instruction Rewriter
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable instruction based on the user's intent and the input image.
## 1. General Principles
- Keep the rewritten instruction **concise** and clear.
- Avoid contradictions, vagueness, or unachievable instructions.
- Maintain the core logic of the original instruction; only enhance clarity and feasibility.
- Ensure new added elements or modifications align with the image's original context and art style.
## 2. Task Types
### Add, Delete, Replace:
- When the input is detailed, only refine grammar and clarity.
- For vague instructions, infer minimal but sufficient details.
- For replacement, use the format: `"Replace X with Y"`.
### Text Editing (e.g., text replacement):
- Enclose text content in quotes, e.g., `Replace "abc" with "xyz"`.
- Preserving the original structure and language—**do not translate** or alter style.
### Human Editing (e.g., change a person’s face/hair):
- Preserve core visual identity (gender, ethnic features).
- Describe expressions in subtle and natural terms.
- Maintain key clothing or styling details unless explicitly replaced.
### Style Transformation:
- If a style is specified, e.g., `Disco style`, rewrite it to encapsulate the essential visual traits.
- Use a fixed template for **coloring/restoration**:  
  `"Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration"`  
  if applicable.
## 4. Output Format
Please provide the rewritten instruction in a clean `json` format as:
{
  "Rewritten": "..."
}
'''
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=dtype).to(device)
# Load LoRA weights for acceleration
pipe.load_lora_weights(
    "lightx2v/Qwen-Image-Lightning", weight_name="Qwen-Image-Lightning-8steps-V1.1.safetensors"
)
pipe.fuse_lora()
if is_xformers_available():
    pipe.enable_xformers_memory_efficient_attention()
else:
    print("xformers not available or failed to load.")
@spaces.GPU(duration=60)
def infer(
    image,
    prompt,
    seed=42,
    randomize_seed=False,
    true_guidance_scale=1.0,
    num_inference_steps=8,
    rewrite_prompt=False,
    hf_token="",
    num_images_per_prompt=1,
    progress=gr.Progress(track_tqdm=True),
):
    """
    Requires user-provided HF token for prompt rewriting.
    """
    original_prompt = prompt  # Save original prompt for display
    negative_prompt = " "
    prompt_info = ""  # Initialize info text
    
    # Handle prompt rewriting with status messages
    if rewrite_prompt:
        if not hf_token.strip():
            gr.Warning("HF Token is required for prompt rewriting but was not provided!")
            prompt_info = f"""## ⚠️ Prompt Rewriting Skipped (No HF Token)
**Original Prompt:**  
{original_prompt}"""
            rewritten_prompt = original_prompt
        else:
            try:
                rewritten_prompt = polish_prompt(original_prompt, SYSTEM_PROMPT_EDIT, hf_token)
                prompt_info = f"""## ✅ Prompt Rewrite Successful
**Original Prompt:**  
{original_prompt}

**Enhanced Prompt:**  
{rewritten_prompt}"""
            except Exception as e:
                gr.Warning(f"Prompt rewriting failed: {str(e)}")
                rewritten_prompt = original_prompt
                prompt_info = f"""## ❌ Prompt Rewrite Failed
**Original Prompt:**  
{original_prompt}
**Error:**  
{str(e)}"""
    else:
        rewritten_prompt = original_prompt
        prompt_info = f"""## Original Prompt (No Rewrite)
**User Input:**  
{original_prompt}"""
    
    # Generate images
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)
    
    edited_images = pipe(
        image,
        prompt=rewritten_prompt,
        negative_prompt=negative_prompt,
        num_inference_steps=num_inference_steps,
        generator=generator,
        true_cfg_scale=true_guidance_scale,
        num_images_per_prompt=num_images_per_prompt,
    ).images
    
    return edited_images, seed, prompt_info

MAX_SEED = np.iinfo(np.int32).max
examples = [
    "Replace the cat with a friendly golden retriever. Make it look happier, and add more background details.",
    "Add text 'Qwen - AI for image editing' in Chinese at the bottom center with a small shadow.",
    "Change the style to 1970s vintage, add old photo effect, restore any scratches on the wall or window.",
    "Remove the blue sky and replace it with a dark night cityscape.",
    """Replace "Qwen" with "通义" in the Image. Ensure Chinese font is used for "通义" and position it to the top left with a light heading-style font."""
]

with gr.Blocks() as demo:
    gr.Markdown("# Qwen-Image-Edit [FAST] with HF Prompt Enhancement")
    gr.Markdown("✨ **8-step lightning inferencing with lightx2v's LoRA.**")
    gr.Markdown("⚠️ **Prompt rewriting requires your own [Hugging Face token](https://huggingface.co/settings/tokens)**")
    gr.Markdown("🚧 **Work in progress, further improvements coming soon.**")
    
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="pil")
            prompt = gr.Text(label="Edit Instruction", placeholder="e.g. Add a dog to the right side.")
            with gr.Accordion("Advanced Settings", open=False):
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0
                )
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                with gr.Row():
                    true_guidance_scale = gr.Slider(
                        label="True Guidance Scale",
                        minimum=1.0,
                        maximum=5.0,
                        step=0.1,
                        value=4.0
                    )
                    num_inference_steps = gr.Slider(
                        label="Inference Steps (Fast 8-step mode)",
                        minimum=4,
                        maximum=16,
                        step=1,
                        value=8
                    )
                    num_images_per_prompt = gr.Slider(
                        label="Images per Prompt",
                        minimum=1,
                        maximum=4,
                        step=1,
                        value=1
                    )
            run_button = gr.Button("Edit", variant="primary")
        
        with gr.Column():
            result = gr.Gallery(label="Output Images", show_label=False, columns=1)
            # New prompt display component
            prompt_info = gr.Markdown("## Prompt Details", visible=False)
            
            with gr.Group():
                rewrite_toggle = gr.Checkbox(label="Use Prompt Rewriter (Requires HF Token)", value=False, interactive=True)
                hf_token_input = gr.Textbox(
                    label="Your Hugging Face Token",
                    type="password",
                    placeholder="hf_xxxxxxxxxxxxxxxx",
                    visible=False,
                    info="Required for prompt rewriting - get yours from [Hugging Face settings](https://huggingface.co/settings/tokens). API tokens are kept safe locally, but as good practice please make sure to double check the source code. Invalid or missing keys will revert to the original prompt entered."
                )
                def toggle_token_visibility(checked):
                    return gr.update(visible=checked)
                
                rewrite_toggle.change(
                    toggle_token_visibility,
                    inputs=[rewrite_toggle],
                    outputs=[hf_token_input]
                )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            input_image,
            prompt,
            seed,
            randomize_seed,
            true_guidance_scale,
            num_inference_steps,
            rewrite_toggle,
            hf_token_input,
            num_images_per_prompt
        ],
        outputs=[result, seed, prompt_info]
    )
    
    # Show prompt info box after processing
    def set_prompt_visible():
        return gr.update(visible=True)
    
    run_button.click(
        fn=set_prompt_visible,
        inputs=None,
        outputs=[prompt_info],
        queue=False
    )
    prompt.submit(
        fn=set_prompt_visible,
        inputs=None,
        outputs=[prompt_info],
        queue=False
    )

if __name__ == "__main__":
    demo.launch()