Spaces:
Sleeping
Sleeping
Update Gradio_UI.py
Browse files- Gradio_UI.py +181 -394
Gradio_UI.py
CHANGED
|
@@ -13,368 +13,216 @@
|
|
| 13 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
# See the License for the specific language governing permissions and
|
| 15 |
# limitations under the License.
|
|
|
|
| 16 |
import os
|
| 17 |
import re
|
| 18 |
import shutil
|
| 19 |
-
from
|
| 20 |
-
from typing import Generator
|
| 21 |
|
| 22 |
-
from smolagents.agent_types import AgentAudio, AgentImage, AgentText
|
| 23 |
-
from smolagents.agents import
|
| 24 |
-
from smolagents.memory import
|
| 25 |
-
from smolagents.models import ChatMessageStreamDelta, MessageRole, agglomerate_stream_deltas
|
| 26 |
from smolagents.utils import _is_package_available
|
| 27 |
|
| 28 |
|
| 29 |
-
def
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
step_footnote += f" | Input tokens: {step_log.token_usage.input_tokens:,} | Output tokens: {step_log.token_usage.output_tokens:,}"
|
| 34 |
-
step_footnote += f" | Duration: {round(float(step_log.timing.duration), 2)}s" if step_log.timing.duration else ""
|
| 35 |
-
step_footnote_content = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """
|
| 36 |
-
return step_footnote_content
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
def _clean_model_output(model_output: str) -> str:
|
| 40 |
-
"""
|
| 41 |
-
Clean up model output by removing trailing tags and extra backticks.
|
| 42 |
-
|
| 43 |
-
Args:
|
| 44 |
-
model_output (`str`): Raw model output.
|
| 45 |
-
|
| 46 |
-
Returns:
|
| 47 |
-
`str`: Cleaned model output.
|
| 48 |
-
"""
|
| 49 |
-
if not model_output:
|
| 50 |
-
return ""
|
| 51 |
-
model_output = model_output.strip()
|
| 52 |
-
# Remove any trailing <end_code> and extra backticks, handling multiple possible formats
|
| 53 |
-
model_output = re.sub(r"```\s*<end_code>", "```", model_output) # handles ```<end_code>
|
| 54 |
-
model_output = re.sub(r"<end_code>\s*```", "```", model_output) # handles <end_code>```
|
| 55 |
-
model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output) # handles ```\n<end_code>
|
| 56 |
-
return model_output.strip()
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
def _format_code_content(content: str) -> str:
|
| 60 |
-
"""
|
| 61 |
-
Format code content as Python code block if it's not already formatted.
|
| 62 |
-
|
| 63 |
-
Args:
|
| 64 |
-
content (`str`): Code content to format.
|
| 65 |
-
|
| 66 |
-
Returns:
|
| 67 |
-
`str`: Code content formatted as a Python code block.
|
| 68 |
-
"""
|
| 69 |
-
content = content.strip()
|
| 70 |
-
# Remove existing code blocks and end_code tags
|
| 71 |
-
content = re.sub(r"```.*?\n", "", content)
|
| 72 |
-
content = re.sub(r"\s*<end_code>\s*", "", content)
|
| 73 |
-
content = content.strip()
|
| 74 |
-
# Add Python code block formatting if not already present
|
| 75 |
-
if not content.startswith("```python"):
|
| 76 |
-
content = f"```python\n{content}\n```"
|
| 77 |
-
return content
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
def _process_action_step(step_log: ActionStep, skip_model_outputs: bool = False) -> Generator:
|
| 81 |
-
"""
|
| 82 |
-
Process an [`ActionStep`] and yield appropriate Gradio ChatMessage objects.
|
| 83 |
-
|
| 84 |
-
Args:
|
| 85 |
-
step_log ([`ActionStep`]): ActionStep to process.
|
| 86 |
-
skip_model_outputs (`bool`): Whether to skip model outputs.
|
| 87 |
-
|
| 88 |
-
Yields:
|
| 89 |
-
`gradio.ChatMessage`: Gradio ChatMessages representing the action step.
|
| 90 |
-
"""
|
| 91 |
import gradio as gr
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
yield gr.ChatMessage(role=
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
if
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
"
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
)
|
| 140 |
-
|
| 141 |
-
# Display any images in observations
|
| 142 |
-
if getattr(step_log, "observations_images", []):
|
| 143 |
-
for image in step_log.observations_images:
|
| 144 |
-
path_image = AgentImage(image).to_string()
|
| 145 |
-
yield gr.ChatMessage(
|
| 146 |
-
role=MessageRole.ASSISTANT,
|
| 147 |
-
content={"path": path_image, "mime_type": f"image/{path_image.split('.')[-1]}"},
|
| 148 |
-
metadata={"title": "🖼️ Output Image", "status": "done"},
|
| 149 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
role=MessageRole.ASSISTANT,
|
| 160 |
-
content=get_step_footnote_content(step_log, step_number),
|
| 161 |
-
metadata={"status": "done"},
|
| 162 |
-
)
|
| 163 |
-
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content="-----", metadata={"status": "done"})
|
| 164 |
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
-
Args:
|
| 171 |
-
step_log ([`PlanningStep`]): PlanningStep to process.
|
| 172 |
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
import gradio as gr
|
| 177 |
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content=step_log.plan, metadata={"status": "done"})
|
| 181 |
-
yield gr.ChatMessage(
|
| 182 |
-
role=MessageRole.ASSISTANT,
|
| 183 |
-
content=get_step_footnote_content(step_log, "Planning step"),
|
| 184 |
-
metadata={"status": "done"},
|
| 185 |
-
)
|
| 186 |
-
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content="-----", metadata={"status": "done"})
|
| 187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
|
|
|
| 192 |
|
| 193 |
-
|
| 194 |
-
|
| 195 |
|
| 196 |
-
Yields:
|
| 197 |
-
`gradio.ChatMessage`: Gradio ChatMessages representing the final answer.
|
| 198 |
-
"""
|
| 199 |
-
import gradio as gr
|
| 200 |
-
|
| 201 |
-
final_answer = step_log.output
|
| 202 |
if isinstance(final_answer, AgentText):
|
| 203 |
yield gr.ChatMessage(
|
| 204 |
-
role=
|
| 205 |
content=f"**Final answer:**\n{final_answer.to_string()}\n",
|
| 206 |
-
metadata={"status": "done"},
|
| 207 |
)
|
| 208 |
elif isinstance(final_answer, AgentImage):
|
| 209 |
yield gr.ChatMessage(
|
| 210 |
-
role=
|
| 211 |
content={"path": final_answer.to_string(), "mime_type": "image/png"},
|
| 212 |
-
metadata={"status": "done"},
|
| 213 |
)
|
| 214 |
elif isinstance(final_answer, AgentAudio):
|
| 215 |
yield gr.ChatMessage(
|
| 216 |
-
role=
|
| 217 |
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
|
| 218 |
-
metadata={"status": "done"},
|
| 219 |
-
)
|
| 220 |
-
else:
|
| 221 |
-
yield gr.ChatMessage(
|
| 222 |
-
role=MessageRole.ASSISTANT, content=f"**Final answer:** {str(final_answer)}", metadata={"status": "done"}
|
| 223 |
)
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
def pull_messages_from_step(step_log: ActionStep | PlanningStep | FinalAnswerStep, skip_model_outputs: bool = False):
|
| 227 |
-
"""Extract Gradio ChatMessage objects from agent steps with proper nesting.
|
| 228 |
-
|
| 229 |
-
Args:
|
| 230 |
-
step_log: The step log to display as gr.ChatMessage objects.
|
| 231 |
-
skip_model_outputs: If True, skip the model outputs when creating the gr.ChatMessage objects:
|
| 232 |
-
This is used for instance when streaming model outputs have already been displayed.
|
| 233 |
-
"""
|
| 234 |
-
if not _is_package_available("gradio"):
|
| 235 |
-
raise ModuleNotFoundError(
|
| 236 |
-
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
|
| 237 |
-
)
|
| 238 |
-
if isinstance(step_log, ActionStep):
|
| 239 |
-
yield from _process_action_step(step_log, skip_model_outputs)
|
| 240 |
-
elif isinstance(step_log, PlanningStep):
|
| 241 |
-
yield from _process_planning_step(step_log, skip_model_outputs)
|
| 242 |
-
elif isinstance(step_log, FinalAnswerStep):
|
| 243 |
-
yield from _process_final_answer_step(step_log)
|
| 244 |
else:
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
def stream_to_gradio(
|
| 249 |
-
agent,
|
| 250 |
-
task: str,
|
| 251 |
-
task_images: list | None = None,
|
| 252 |
-
reset_agent_memory: bool = False,
|
| 253 |
-
additional_args: dict | None = None,
|
| 254 |
-
) -> Generator:
|
| 255 |
-
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
|
| 256 |
-
|
| 257 |
-
if not _is_package_available("gradio"):
|
| 258 |
-
raise ModuleNotFoundError(
|
| 259 |
-
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
|
| 260 |
-
)
|
| 261 |
-
accumulated_events: list[ChatMessageStreamDelta] = []
|
| 262 |
-
for event in agent.run(
|
| 263 |
-
task, images=task_images, stream=True, reset=reset_agent_memory, additional_args=additional_args
|
| 264 |
-
):
|
| 265 |
-
if isinstance(event, ActionStep | PlanningStep | FinalAnswerStep):
|
| 266 |
-
for message in pull_messages_from_step(
|
| 267 |
-
event,
|
| 268 |
-
# If we're streaming model outputs, no need to display them twice
|
| 269 |
-
skip_model_outputs=getattr(agent, "stream_outputs", False),
|
| 270 |
-
):
|
| 271 |
-
yield message
|
| 272 |
-
accumulated_events = []
|
| 273 |
-
elif isinstance(event, ChatMessageStreamDelta):
|
| 274 |
-
accumulated_events.append(event)
|
| 275 |
-
text = agglomerate_stream_deltas(accumulated_events).render_as_markdown()
|
| 276 |
-
yield text
|
| 277 |
|
| 278 |
|
| 279 |
class GradioUI:
|
| 280 |
-
"""
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
This class provides a web interface to interact with the agent in real-time, allowing users to submit prompts, upload files, and receive responses in a chat-like format.
|
| 284 |
-
It can reset the agent's memory at the start of each interaction if desired.
|
| 285 |
-
It supports file uploads, which are saved to a specified folder.
|
| 286 |
-
It uses the [`gradio.Chatbot`] component to display the conversation history.
|
| 287 |
-
This class requires the `gradio` extra to be installed: `pip install 'smolagents[gradio]'`.
|
| 288 |
-
|
| 289 |
-
Args:
|
| 290 |
-
agent ([`MultiStepAgent`]): The agent to interact with.
|
| 291 |
-
file_upload_folder (`str`, *optional*): The folder where uploaded files will be saved.
|
| 292 |
-
If not provided, file uploads are disabled.
|
| 293 |
-
reset_agent_memory (`bool`, *optional*, defaults to `False`): Whether to reset the agent's memory at the start of each interaction.
|
| 294 |
-
If `True`, the agent will not remember previous interactions.
|
| 295 |
-
|
| 296 |
-
Raises:
|
| 297 |
-
ModuleNotFoundError: If the `gradio` extra is not installed.
|
| 298 |
-
|
| 299 |
-
Example:
|
| 300 |
-
```python
|
| 301 |
-
from smolagents import CodeAgent, GradioUI, InferenceClientModel
|
| 302 |
-
|
| 303 |
-
model = InferenceClientModel(model_id="meta-llama/Meta-Llama-3.1-8B-Instruct")
|
| 304 |
-
agent = CodeAgent(tools=[], model=model)
|
| 305 |
-
gradio_ui = GradioUI(agent, file_upload_folder="uploads", reset_agent_memory=True)
|
| 306 |
-
gradio_ui.launch()
|
| 307 |
-
```
|
| 308 |
-
"""
|
| 309 |
-
|
| 310 |
-
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None, reset_agent_memory: bool = False):
|
| 311 |
if not _is_package_available("gradio"):
|
| 312 |
raise ModuleNotFoundError(
|
| 313 |
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
|
| 314 |
)
|
| 315 |
self.agent = agent
|
| 316 |
-
self.file_upload_folder =
|
| 317 |
-
self.reset_agent_memory = reset_agent_memory
|
| 318 |
-
self.name = getattr(agent, "name") or "Agent interface"
|
| 319 |
-
self.description = getattr(agent, "description", None)
|
| 320 |
if self.file_upload_folder is not None:
|
| 321 |
-
if not
|
| 322 |
-
|
| 323 |
|
| 324 |
-
def interact_with_agent(self, prompt, messages
|
| 325 |
import gradio as gr
|
| 326 |
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
try:
|
| 332 |
-
messages.append(gr.ChatMessage(role="user", content=prompt, metadata={"status": "done"}))
|
| 333 |
yield messages
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
messages.append(
|
| 347 |
-
gr.ChatMessage(role=MessageRole.ASSISTANT, content=msg, metadata={"status": "pending"})
|
| 348 |
-
)
|
| 349 |
-
yield messages
|
| 350 |
-
|
| 351 |
-
yield messages
|
| 352 |
-
except Exception as e:
|
| 353 |
-
yield messages
|
| 354 |
-
raise gr.Error(f"Error in interaction: {str(e)}")
|
| 355 |
-
|
| 356 |
-
def upload_file(self, file, file_uploads_log, allowed_file_types=None):
|
| 357 |
"""
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
The file is saved to the `self.file_upload_folder` folder.
|
| 361 |
-
If the file type is not allowed, it returns a message indicating the disallowed file type.
|
| 362 |
-
|
| 363 |
-
Args:
|
| 364 |
-
file (`gradio.File`): The uploaded file.
|
| 365 |
-
file_uploads_log (`list`): A list to log uploaded files.
|
| 366 |
-
allowed_file_types (`list`, *optional*): List of allowed file extensions. Defaults to [".pdf", ".docx", ".txt"].
|
| 367 |
"""
|
| 368 |
import gradio as gr
|
| 369 |
|
| 370 |
if file is None:
|
| 371 |
-
return gr.Textbox(
|
| 372 |
|
| 373 |
-
|
| 374 |
-
|
|
|
|
|
|
|
| 375 |
|
| 376 |
-
|
| 377 |
-
if file_ext not in allowed_file_types:
|
| 378 |
return gr.Textbox("File type disallowed", visible=True), file_uploads_log
|
| 379 |
|
| 380 |
# Sanitize file name
|
|
@@ -383,6 +231,16 @@ class GradioUI:
|
|
| 383 |
r"[^\w\-.]", "_", original_name
|
| 384 |
) # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores
|
| 385 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
# Save the uploaded file to the specified folder
|
| 387 |
file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
|
| 388 |
shutil.copy(file.name, file_path)
|
|
@@ -390,8 +248,6 @@ class GradioUI:
|
|
| 390 |
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]
|
| 391 |
|
| 392 |
def log_user_message(self, text_input, file_uploads_log):
|
| 393 |
-
import gradio as gr
|
| 394 |
-
|
| 395 |
return (
|
| 396 |
text_input
|
| 397 |
+ (
|
|
@@ -400,110 +256,41 @@ class GradioUI:
|
|
| 400 |
else ""
|
| 401 |
),
|
| 402 |
"",
|
| 403 |
-
gr.Button(interactive=False),
|
| 404 |
)
|
| 405 |
|
| 406 |
-
def launch(self,
|
| 407 |
-
"""
|
| 408 |
-
Launch the Gradio app with the agent interface.
|
| 409 |
-
|
| 410 |
-
Args:
|
| 411 |
-
share (`bool`, defaults to `True`): Whether to share the app publicly.
|
| 412 |
-
**kwargs: Additional keyword arguments to pass to the Gradio launch method.
|
| 413 |
-
"""
|
| 414 |
-
self.create_app().launch(debug=True, share=share, **kwargs)
|
| 415 |
-
|
| 416 |
-
def create_app(self):
|
| 417 |
import gradio as gr
|
| 418 |
|
| 419 |
-
with gr.Blocks as demo:
|
| 420 |
-
# Add session state to store session-specific data
|
| 421 |
-
session_state = gr.State({})
|
| 422 |
stored_messages = gr.State([])
|
| 423 |
file_uploads_log = gr.State([])
|
| 424 |
-
|
| 425 |
-
with gr.Sidebar():
|
| 426 |
-
gr.Markdown(
|
| 427 |
-
f"# {self.name.replace('_', ' ').capitalize()}"
|
| 428 |
-
"\n> This web ui allows you to interact with a `smolagents` agent that can use tools and execute steps to complete tasks."
|
| 429 |
-
+ (f"\n\n**Agent description:**\n{self.description}" if self.description else "")
|
| 430 |
-
)
|
| 431 |
-
|
| 432 |
-
with gr.Group():
|
| 433 |
-
gr.Markdown("**Your request**", container=True)
|
| 434 |
-
text_input = gr.Textbox(
|
| 435 |
-
lines=3,
|
| 436 |
-
label="Chat Message",
|
| 437 |
-
container=False,
|
| 438 |
-
placeholder="Enter your prompt here and press Shift+Enter or press the button",
|
| 439 |
-
)
|
| 440 |
-
submit_btn = gr.Button("Submit", variant="primary")
|
| 441 |
-
|
| 442 |
-
# If an upload folder is provided, enable the upload feature
|
| 443 |
-
if self.file_upload_folder is not None:
|
| 444 |
-
upload_file = gr.File(label="Upload a file")
|
| 445 |
-
upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False)
|
| 446 |
-
upload_file.change(
|
| 447 |
-
self.upload_file,
|
| 448 |
-
[upload_file, file_uploads_log],
|
| 449 |
-
[upload_status, file_uploads_log],
|
| 450 |
-
)
|
| 451 |
-
|
| 452 |
-
gr.HTML(
|
| 453 |
-
"<br><br><h4><center>Powered by <a target='_blank' href='https://github.com/huggingface/smolagents'><b>smolagents</b></a></center></h4>"
|
| 454 |
-
)
|
| 455 |
-
|
| 456 |
-
# Main chat interface
|
| 457 |
chatbot = gr.Chatbot(
|
| 458 |
label="Agent",
|
| 459 |
type="messages",
|
| 460 |
avatar_images=(
|
| 461 |
None,
|
| 462 |
-
"https://huggingface.co/datasets/
|
| 463 |
),
|
| 464 |
resizeable=True,
|
| 465 |
scale=1,
|
| 466 |
-
latex_delimiters=[
|
| 467 |
-
{"left": r"$$", "right": r"$$", "display": True},
|
| 468 |
-
{"left": r"$", "right": r"$", "display": False},
|
| 469 |
-
{"left": r"\[", "right": r"\]", "display": True},
|
| 470 |
-
{"left": r"\(", "right": r"\)", "display": False},
|
| 471 |
-
],
|
| 472 |
)
|
| 473 |
-
|
| 474 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 475 |
text_input.submit(
|
| 476 |
self.log_user_message,
|
| 477 |
[text_input, file_uploads_log],
|
| 478 |
-
[stored_messages, text_input
|
| 479 |
-
).then(self.interact_with_agent, [stored_messages, chatbot
|
| 480 |
-
lambda: (
|
| 481 |
-
gr.Textbox(
|
| 482 |
-
interactive=True, placeholder="Enter your prompt here and press Shift+Enter or the button"
|
| 483 |
-
),
|
| 484 |
-
gr.Button(interactive=True),
|
| 485 |
-
),
|
| 486 |
-
None,
|
| 487 |
-
[text_input, submit_btn],
|
| 488 |
-
)
|
| 489 |
-
|
| 490 |
-
submit_btn.click(
|
| 491 |
-
self.log_user_message,
|
| 492 |
-
[text_input, file_uploads_log],
|
| 493 |
-
[stored_messages, text_input, submit_btn],
|
| 494 |
-
).then(self.interact_with_agent, [stored_messages, chatbot, session_state], [chatbot]).then(
|
| 495 |
-
lambda: (
|
| 496 |
-
gr.Textbox(
|
| 497 |
-
interactive=True, placeholder="Enter your prompt here and press Shift+Enter or the button"
|
| 498 |
-
),
|
| 499 |
-
gr.Button(interactive=True),
|
| 500 |
-
),
|
| 501 |
-
None,
|
| 502 |
-
[text_input, submit_btn],
|
| 503 |
-
)
|
| 504 |
|
| 505 |
-
|
| 506 |
-
return demo
|
| 507 |
|
| 508 |
|
| 509 |
__all__ = ["stream_to_gradio", "GradioUI"]
|
|
|
|
| 13 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
# See the License for the specific language governing permissions and
|
| 15 |
# limitations under the License.
|
| 16 |
+
import mimetypes
|
| 17 |
import os
|
| 18 |
import re
|
| 19 |
import shutil
|
| 20 |
+
from typing import Optional
|
|
|
|
| 21 |
|
| 22 |
+
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
|
| 23 |
+
from smolagents.agents import ActionStep, MultiStepAgent
|
| 24 |
+
from smolagents.memory import MemoryStep
|
|
|
|
| 25 |
from smolagents.utils import _is_package_available
|
| 26 |
|
| 27 |
|
| 28 |
+
def pull_messages_from_step(
|
| 29 |
+
step_log: MemoryStep,
|
| 30 |
+
):
|
| 31 |
+
"""Extract ChatMessage objects from agent steps with proper nesting"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
import gradio as gr
|
| 33 |
|
| 34 |
+
if isinstance(step_log, ActionStep):
|
| 35 |
+
# Output the step number
|
| 36 |
+
step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else ""
|
| 37 |
+
yield gr.ChatMessage(role="assistant", content=f"**{step_number}**")
|
| 38 |
+
|
| 39 |
+
# First yield the thought/reasoning from the LLM
|
| 40 |
+
if hasattr(step_log, "model_output") and step_log.model_output is not None:
|
| 41 |
+
# Clean up the LLM output
|
| 42 |
+
model_output = step_log.model_output.strip()
|
| 43 |
+
# Remove any trailing <end_code> and extra backticks, handling multiple possible formats
|
| 44 |
+
model_output = re.sub(r"```\s*<end_code>", "```", model_output) # handles ```<end_code>
|
| 45 |
+
model_output = re.sub(r"<end_code>\s*```", "```", model_output) # handles <end_code>```
|
| 46 |
+
model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output) # handles ```\n<end_code>
|
| 47 |
+
model_output = model_output.strip()
|
| 48 |
+
yield gr.ChatMessage(role="assistant", content=model_output)
|
| 49 |
+
|
| 50 |
+
# For tool calls, create a parent message
|
| 51 |
+
if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None:
|
| 52 |
+
first_tool_call = step_log.tool_calls[0]
|
| 53 |
+
used_code = first_tool_call.name == "python_interpreter"
|
| 54 |
+
parent_id = f"call_{len(step_log.tool_calls)}"
|
| 55 |
+
|
| 56 |
+
# Tool call becomes the parent message with timing info
|
| 57 |
+
# First we will handle arguments based on type
|
| 58 |
+
args = first_tool_call.arguments
|
| 59 |
+
if isinstance(args, dict):
|
| 60 |
+
content = str(args.get("answer", str(args)))
|
| 61 |
+
else:
|
| 62 |
+
content = str(args).strip()
|
| 63 |
+
|
| 64 |
+
if used_code:
|
| 65 |
+
# Clean up the content by removing any end code tags
|
| 66 |
+
content = re.sub(r"```.*?\n", "", content) # Remove existing code blocks
|
| 67 |
+
content = re.sub(r"\s*<end_code>\s*", "", content) # Remove end_code tags
|
| 68 |
+
content = content.strip()
|
| 69 |
+
if not content.startswith("```python"):
|
| 70 |
+
content = f"```python\n{content}\n```"
|
| 71 |
+
|
| 72 |
+
parent_message_tool = gr.ChatMessage(
|
| 73 |
+
role="assistant",
|
| 74 |
+
content=content,
|
| 75 |
+
metadata={
|
| 76 |
+
"title": f"🛠️ Used tool {first_tool_call.name}",
|
| 77 |
+
"id": parent_id,
|
| 78 |
+
"status": "pending",
|
| 79 |
+
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
)
|
| 81 |
+
yield parent_message_tool
|
| 82 |
+
|
| 83 |
+
# Nesting execution logs under the tool call if they exist
|
| 84 |
+
if hasattr(step_log, "observations") and (
|
| 85 |
+
step_log.observations is not None and step_log.observations.strip()
|
| 86 |
+
): # Only yield execution logs if there's actual content
|
| 87 |
+
log_content = step_log.observations.strip()
|
| 88 |
+
if log_content:
|
| 89 |
+
log_content = re.sub(r"^Execution logs:\s*", "", log_content)
|
| 90 |
+
yield gr.ChatMessage(
|
| 91 |
+
role="assistant",
|
| 92 |
+
content=f"{log_content}",
|
| 93 |
+
metadata={"title": "📝 Execution Logs", "parent_id": parent_id, "status": "done"},
|
| 94 |
+
)
|
| 95 |
|
| 96 |
+
# Nesting any errors under the tool call
|
| 97 |
+
if hasattr(step_log, "error") and step_log.error is not None:
|
| 98 |
+
yield gr.ChatMessage(
|
| 99 |
+
role="assistant",
|
| 100 |
+
content=str(step_log.error),
|
| 101 |
+
metadata={"title": "💥 Error", "parent_id": parent_id, "status": "done"},
|
| 102 |
+
)
|
| 103 |
|
| 104 |
+
# Update parent message metadata to done status without yielding a new message
|
| 105 |
+
parent_message_tool.metadata["status"] = "done"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
+
# Handle standalone errors but not from tool calls
|
| 108 |
+
elif hasattr(step_log, "error") and step_log.error is not None:
|
| 109 |
+
yield gr.ChatMessage(role="assistant", content=str(step_log.error), metadata={"title": "💥 Error"})
|
| 110 |
|
| 111 |
+
# Calculate duration and token information
|
| 112 |
+
step_footnote = f"{step_number}"
|
| 113 |
+
if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"):
|
| 114 |
+
token_str = (
|
| 115 |
+
f" | Input-tokens:{step_log.input_token_count:,} | Output-tokens:{step_log.output_token_count:,}"
|
| 116 |
+
)
|
| 117 |
+
step_footnote += token_str
|
| 118 |
+
if hasattr(step_log, "duration"):
|
| 119 |
+
step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None
|
| 120 |
+
step_footnote += step_duration
|
| 121 |
+
step_footnote = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """
|
| 122 |
+
yield gr.ChatMessage(role="assistant", content=f"{step_footnote}")
|
| 123 |
+
yield gr.ChatMessage(role="assistant", content="-----")
|
| 124 |
|
|
|
|
|
|
|
| 125 |
|
| 126 |
+
def stream_to_gradio(
|
| 127 |
+
agent,
|
| 128 |
+
task: str,
|
| 129 |
+
reset_agent_memory: bool = False,
|
| 130 |
+
additional_args: Optional[dict] = None,
|
| 131 |
+
):
|
| 132 |
+
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
|
| 133 |
+
if not _is_package_available("gradio"):
|
| 134 |
+
raise ModuleNotFoundError(
|
| 135 |
+
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
|
| 136 |
+
)
|
| 137 |
import gradio as gr
|
| 138 |
|
| 139 |
+
total_input_tokens = 0
|
| 140 |
+
total_output_tokens = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
+
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
|
| 143 |
+
# Track tokens if model provides them
|
| 144 |
+
if hasattr(agent.model, "last_input_token_count"):
|
| 145 |
+
total_input_tokens += agent.model.last_input_token_count
|
| 146 |
+
total_output_tokens += agent.model.last_output_token_count
|
| 147 |
+
if isinstance(step_log, ActionStep):
|
| 148 |
+
step_log.input_token_count = agent.model.last_input_token_count
|
| 149 |
+
step_log.output_token_count = agent.model.last_output_token_count
|
| 150 |
|
| 151 |
+
for message in pull_messages_from_step(
|
| 152 |
+
step_log,
|
| 153 |
+
):
|
| 154 |
+
yield message
|
| 155 |
|
| 156 |
+
final_answer = step_log # Last log is the run's final_answer
|
| 157 |
+
final_answer = handle_agent_output_types(final_answer)
|
| 158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
if isinstance(final_answer, AgentText):
|
| 160 |
yield gr.ChatMessage(
|
| 161 |
+
role="assistant",
|
| 162 |
content=f"**Final answer:**\n{final_answer.to_string()}\n",
|
|
|
|
| 163 |
)
|
| 164 |
elif isinstance(final_answer, AgentImage):
|
| 165 |
yield gr.ChatMessage(
|
| 166 |
+
role="assistant",
|
| 167 |
content={"path": final_answer.to_string(), "mime_type": "image/png"},
|
|
|
|
| 168 |
)
|
| 169 |
elif isinstance(final_answer, AgentAudio):
|
| 170 |
yield gr.ChatMessage(
|
| 171 |
+
role="assistant",
|
| 172 |
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
else:
|
| 175 |
+
yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
|
| 178 |
class GradioUI:
|
| 179 |
+
"""A one-line interface to launch your agent in Gradio"""
|
| 180 |
+
|
| 181 |
+
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
if not _is_package_available("gradio"):
|
| 183 |
raise ModuleNotFoundError(
|
| 184 |
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
|
| 185 |
)
|
| 186 |
self.agent = agent
|
| 187 |
+
self.file_upload_folder = file_upload_folder
|
|
|
|
|
|
|
|
|
|
| 188 |
if self.file_upload_folder is not None:
|
| 189 |
+
if not os.path.exists(file_upload_folder):
|
| 190 |
+
os.mkdir(file_upload_folder)
|
| 191 |
|
| 192 |
+
def interact_with_agent(self, prompt, messages):
|
| 193 |
import gradio as gr
|
| 194 |
|
| 195 |
+
messages.append(gr.ChatMessage(role="user", content=prompt))
|
| 196 |
+
yield messages
|
| 197 |
+
for msg in stream_to_gradio(self.agent, task=prompt, reset_agent_memory=False):
|
| 198 |
+
messages.append(msg)
|
|
|
|
|
|
|
| 199 |
yield messages
|
| 200 |
+
yield messages
|
| 201 |
+
|
| 202 |
+
def upload_file(
|
| 203 |
+
self,
|
| 204 |
+
file,
|
| 205 |
+
file_uploads_log,
|
| 206 |
+
allowed_file_types=[
|
| 207 |
+
"application/pdf",
|
| 208 |
+
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
|
| 209 |
+
"text/plain",
|
| 210 |
+
],
|
| 211 |
+
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
"""
|
| 213 |
+
Handle file uploads, default allowed types are .pdf, .docx, and .txt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
"""
|
| 215 |
import gradio as gr
|
| 216 |
|
| 217 |
if file is None:
|
| 218 |
+
return gr.Textbox("No file uploaded", visible=True), file_uploads_log
|
| 219 |
|
| 220 |
+
try:
|
| 221 |
+
mime_type, _ = mimetypes.guess_type(file.name)
|
| 222 |
+
except Exception as e:
|
| 223 |
+
return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log
|
| 224 |
|
| 225 |
+
if mime_type not in allowed_file_types:
|
|
|
|
| 226 |
return gr.Textbox("File type disallowed", visible=True), file_uploads_log
|
| 227 |
|
| 228 |
# Sanitize file name
|
|
|
|
| 231 |
r"[^\w\-.]", "_", original_name
|
| 232 |
) # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores
|
| 233 |
|
| 234 |
+
type_to_ext = {}
|
| 235 |
+
for ext, t in mimetypes.types_map.items():
|
| 236 |
+
if t not in type_to_ext:
|
| 237 |
+
type_to_ext[t] = ext
|
| 238 |
+
|
| 239 |
+
# Ensure the extension correlates to the mime type
|
| 240 |
+
sanitized_name = sanitized_name.split(".")[:-1]
|
| 241 |
+
sanitized_name.append("" + type_to_ext[mime_type])
|
| 242 |
+
sanitized_name = "".join(sanitized_name)
|
| 243 |
+
|
| 244 |
# Save the uploaded file to the specified folder
|
| 245 |
file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
|
| 246 |
shutil.copy(file.name, file_path)
|
|
|
|
| 248 |
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]
|
| 249 |
|
| 250 |
def log_user_message(self, text_input, file_uploads_log):
|
|
|
|
|
|
|
| 251 |
return (
|
| 252 |
text_input
|
| 253 |
+ (
|
|
|
|
| 256 |
else ""
|
| 257 |
),
|
| 258 |
"",
|
|
|
|
| 259 |
)
|
| 260 |
|
| 261 |
+
def launch(self, **kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
import gradio as gr
|
| 263 |
|
| 264 |
+
with gr.Blocks(fill_height=True) as demo:
|
|
|
|
|
|
|
| 265 |
stored_messages = gr.State([])
|
| 266 |
file_uploads_log = gr.State([])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
chatbot = gr.Chatbot(
|
| 268 |
label="Agent",
|
| 269 |
type="messages",
|
| 270 |
avatar_images=(
|
| 271 |
None,
|
| 272 |
+
"https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/communication/Alfred.png",
|
| 273 |
),
|
| 274 |
resizeable=True,
|
| 275 |
scale=1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
)
|
| 277 |
+
# If an upload folder is provided, enable the upload feature
|
| 278 |
+
if self.file_upload_folder is not None:
|
| 279 |
+
upload_file = gr.File(label="Upload a file")
|
| 280 |
+
upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False)
|
| 281 |
+
upload_file.change(
|
| 282 |
+
self.upload_file,
|
| 283 |
+
[upload_file, file_uploads_log],
|
| 284 |
+
[upload_status, file_uploads_log],
|
| 285 |
+
)
|
| 286 |
+
text_input = gr.Textbox(lines=1, label="Chat Message")
|
| 287 |
text_input.submit(
|
| 288 |
self.log_user_message,
|
| 289 |
[text_input, file_uploads_log],
|
| 290 |
+
[stored_messages, text_input],
|
| 291 |
+
).then(self.interact_with_agent, [stored_messages, chatbot], [chatbot])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
|
| 293 |
+
demo.launch(debug=True, share=True, **kwargs)
|
|
|
|
| 294 |
|
| 295 |
|
| 296 |
__all__ = ["stream_to_gradio", "GradioUI"]
|