Spaces:
Running
on
Zero
Running
on
Zero
update: missing file
Browse files
imcui/third_party/MatchAnything/src/datasets/common_data_pair.py
ADDED
|
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os.path as osp
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from torch.utils.data import Dataset
|
| 6 |
+
from loguru import logger
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
from src.utils.dataset import read_megadepth_gray
|
| 10 |
+
|
| 11 |
+
class CommonDataset(Dataset):
|
| 12 |
+
def __init__(self,
|
| 13 |
+
root_dir,
|
| 14 |
+
npz_path,
|
| 15 |
+
mode='train',
|
| 16 |
+
min_overlap_score=0.4,
|
| 17 |
+
img_resize=None,
|
| 18 |
+
df=None,
|
| 19 |
+
img_padding=False,
|
| 20 |
+
depth_padding=False,
|
| 21 |
+
augment_fn=None,
|
| 22 |
+
testNpairs=300,
|
| 23 |
+
fp16=False,
|
| 24 |
+
fix_bias=False,
|
| 25 |
+
sample_ratio=1.0,
|
| 26 |
+
**kwargs):
|
| 27 |
+
super().__init__()
|
| 28 |
+
self.root_dir = root_dir
|
| 29 |
+
self.mode = mode
|
| 30 |
+
self.scene_id = npz_path.split('.')[0]
|
| 31 |
+
self.sample_ratio = sample_ratio
|
| 32 |
+
|
| 33 |
+
# prepare scene_info and pair_info
|
| 34 |
+
if mode == 'test' and min_overlap_score > 0:
|
| 35 |
+
logger.warning("You are using `min_overlap_score`!=0 in test mode. Set to 0.")
|
| 36 |
+
min_overlap_score = -3.0
|
| 37 |
+
self.scene_info = np.load(npz_path, allow_pickle=True)
|
| 38 |
+
if mode == 'test':
|
| 39 |
+
self.pair_infos = self.scene_info['pair_infos'][:testNpairs].copy()
|
| 40 |
+
else:
|
| 41 |
+
self.pair_infos = self.scene_info['pair_infos'].copy()
|
| 42 |
+
|
| 43 |
+
# parameters for image resizing, padding and depthmap padding
|
| 44 |
+
if mode == 'train':
|
| 45 |
+
assert img_resize is not None and depth_padding
|
| 46 |
+
self.img_resize = img_resize
|
| 47 |
+
self.df = df
|
| 48 |
+
self.img_padding = img_padding
|
| 49 |
+
|
| 50 |
+
# for training LoFTR
|
| 51 |
+
self.augment_fn = augment_fn if mode == 'train' else None
|
| 52 |
+
self.coarse_scale = getattr(kwargs, 'coarse_scale', 0.125)
|
| 53 |
+
self.load_origin_rgb = kwargs["load_origin_rgb"]
|
| 54 |
+
self.read_gray = kwargs["read_gray"]
|
| 55 |
+
self.normalize_img = kwargs["normalize_img"]
|
| 56 |
+
self.resize_by_stretch = kwargs["resize_by_stretch"]
|
| 57 |
+
depth_max_size = 4000 if 'MTV_cross_modal_data' not in npz_path else 6000
|
| 58 |
+
self.depth_max_size = depth_max_size if depth_padding else 2000 # the upperbound of depthmaps size in megadepth.
|
| 59 |
+
|
| 60 |
+
self.dataset_name = self.scene_info['dataset_name'] if "dataset_name" in self.scene_info else npz_path.split(root_dir)[1].split('/')[1]
|
| 61 |
+
self.gt_matches = self.scene_info['gt_matches'] if 'gt_matches' in self.scene_info else None # sparse matches produced by teacher models, used for training
|
| 62 |
+
self.gt_matches_padding_n = kwargs["gt_matches_padding_n"]
|
| 63 |
+
self.gt_2D_warp = self.scene_info['gt_2D_transforms'] if "gt_2D_transforms" in self.scene_info else None
|
| 64 |
+
self.gt_2D_matches = self.scene_info['gt_2D_matches'] if "gt_2D_matches" in self.scene_info else None # Used for eval
|
| 65 |
+
self.intrins = self.scene_info['intrinsics'] if 'intrinsics' in self.scene_info else None
|
| 66 |
+
self.poses = self.scene_info['poses'] if 'poses' in self.scene_info else None
|
| 67 |
+
|
| 68 |
+
self.fp16 = fp16
|
| 69 |
+
self.fix_bias = fix_bias
|
| 70 |
+
if self.fix_bias:
|
| 71 |
+
self.df = 1
|
| 72 |
+
|
| 73 |
+
def __len__(self):
|
| 74 |
+
return len(self.pair_infos)
|
| 75 |
+
|
| 76 |
+
def __getitem__(self, idx):
|
| 77 |
+
if isinstance(self.pair_infos[idx], np.ndarray):
|
| 78 |
+
idx0, idx1 = self.pair_infos[idx][0], self.pair_infos[idx][1]
|
| 79 |
+
img_path0, img_path1 = self.scene_info['image_paths'][idx0][0], self.scene_info['image_paths'][idx1][1]
|
| 80 |
+
K_0 = torch.zeros((3,3), dtype=torch.float) if self.intrins is None else torch.from_numpy(self.intrins[idx0][0]).float()
|
| 81 |
+
K_1 = torch.zeros((3,3), dtype=torch.float) if self.intrins is None else torch.from_numpy(self.intrins[idx1][1]).float()
|
| 82 |
+
|
| 83 |
+
else:
|
| 84 |
+
if len(self.pair_infos[idx]) == 3:
|
| 85 |
+
(idx0, idx1), overlap_score, central_matches = self.pair_infos[idx]
|
| 86 |
+
elif len(self.pair_infos[idx]) == 2:
|
| 87 |
+
(idx0, idx1), overlap_score = self.pair_infos[idx]
|
| 88 |
+
else:
|
| 89 |
+
raise NotImplementedError
|
| 90 |
+
|
| 91 |
+
img_path0, img_path1 = self.scene_info['image_paths'][idx0], self.scene_info['image_paths'][idx1]
|
| 92 |
+
K_0 = torch.zeros((3,3), dtype=torch.float) if self.intrins is None else torch.from_numpy(self.intrins[idx0]).float()
|
| 93 |
+
K_1 = torch.zeros((3,3), dtype=torch.float) if self.intrins is None else torch.from_numpy(self.intrins[idx1]).float()
|
| 94 |
+
|
| 95 |
+
# read grayscale image and mask. (1, h, w) and (h, w)
|
| 96 |
+
img_name0 = osp.join(self.root_dir, self.dataset_name, img_path0)
|
| 97 |
+
img_name1 = osp.join(self.root_dir, self.dataset_name, img_path1) # Often transformed image based on img0, e.g., depth estimation or Diffusion
|
| 98 |
+
# Note: should be pixel aligned with img0
|
| 99 |
+
|
| 100 |
+
image0, mask0, scale0, origin_img_size0 = read_megadepth_gray(
|
| 101 |
+
img_name0, self.img_resize, self.df, self.img_padding, None, read_gray=self.read_gray, normalize_img=self.normalize_img, resize_by_stretch=self.resize_by_stretch)
|
| 102 |
+
# np.random.choice([self.augment_fn, None], p=[0.5, 0.5]))
|
| 103 |
+
image1, mask1, scale1, origin_img_size1 = read_megadepth_gray(
|
| 104 |
+
img_name1, self.img_resize, self.df, self.img_padding, None, read_gray=self.read_gray, normalize_img=self.normalize_img, resize_by_stretch=self.resize_by_stretch)
|
| 105 |
+
|
| 106 |
+
if self.gt_2D_warp is not None:
|
| 107 |
+
gt_warp = np.concatenate([self.gt_2D_warp[idx], [[0,0,1]]]) # 3 * 3
|
| 108 |
+
else:
|
| 109 |
+
gt_warp = np.zeros((3, 3))
|
| 110 |
+
|
| 111 |
+
depth0 = depth1 = torch.zeros([self.depth_max_size, self.depth_max_size], dtype=torch.float)
|
| 112 |
+
|
| 113 |
+
homo_mask0 = torch.zeros((1, image0.shape[-2], image0.shape[-1]))
|
| 114 |
+
homo_mask1 = torch.zeros((1, image1.shape[-2], image1.shape[-1]))
|
| 115 |
+
gt_matches = torch.zeros((self.gt_matches_padding_n, 4), dtype=torch.float)
|
| 116 |
+
|
| 117 |
+
if self.poses is None:
|
| 118 |
+
T_0to1 = T_1to0 = torch.zeros((4,4), dtype=torch.float) # (4, 4)
|
| 119 |
+
else:
|
| 120 |
+
# read and compute relative poses
|
| 121 |
+
T0 = self.poses[idx0]
|
| 122 |
+
T1 = self.poses[idx1]
|
| 123 |
+
T_0to1 = torch.tensor(np.matmul(T1, np.linalg.inv(T0)), dtype=torch.float)[:4, :4] # (4, 4)
|
| 124 |
+
T_1to0 = T_0to1.inverse()
|
| 125 |
+
|
| 126 |
+
if self.fp16:
|
| 127 |
+
data = {
|
| 128 |
+
'image0': image0.half(), # (1, h, w)
|
| 129 |
+
'depth0': depth0.half(), # (h, w)
|
| 130 |
+
'image1': image1.half(),
|
| 131 |
+
'depth1': depth1.half(),
|
| 132 |
+
'T_0to1': T_0to1, # (4, 4)
|
| 133 |
+
'T_1to0': T_1to0,
|
| 134 |
+
'K0': K_0, # (3, 3)
|
| 135 |
+
'K1': K_1,
|
| 136 |
+
'homo_mask0': homo_mask0,
|
| 137 |
+
'homo_mask1': homo_mask1,
|
| 138 |
+
'gt_matches': gt_matches,
|
| 139 |
+
'gt_matches_mask': torch.zeros((1,), dtype=torch.bool),
|
| 140 |
+
'homography': torch.from_numpy(gt_warp.astype(np.float32)),
|
| 141 |
+
'norm_pixel_mat': torch.zeros((3,3), dtype=torch.float),
|
| 142 |
+
'homo_sample_normed': torch.zeros((3,3), dtype=torch.float),
|
| 143 |
+
'origin_img_size0': origin_img_size0,
|
| 144 |
+
'origin_img_size1': origin_img_size1,
|
| 145 |
+
'scale0': scale0.half(), # [scale_w, scale_h]
|
| 146 |
+
'scale1': scale1.half(),
|
| 147 |
+
'dataset_name': 'MegaDepth',
|
| 148 |
+
'scene_id': self.scene_id,
|
| 149 |
+
'pair_id': idx,
|
| 150 |
+
'pair_names': (img_path0, img_path1),
|
| 151 |
+
}
|
| 152 |
+
else:
|
| 153 |
+
data = {
|
| 154 |
+
'image0': image0, # (1, h, w)
|
| 155 |
+
'depth0': depth0, # (h, w)
|
| 156 |
+
'image1': image1,
|
| 157 |
+
'depth1': depth1,
|
| 158 |
+
'T_0to1': T_0to1, # (4, 4)
|
| 159 |
+
'T_1to0': T_1to0,
|
| 160 |
+
'K0': K_0, # (3, 3)
|
| 161 |
+
'K1': K_1,
|
| 162 |
+
'homo_mask0': homo_mask0,
|
| 163 |
+
'homo_mask1': homo_mask1,
|
| 164 |
+
'homography': torch.from_numpy(gt_warp.astype(np.float32)),
|
| 165 |
+
'norm_pixel_mat': torch.zeros((3,3), dtype=torch.float),
|
| 166 |
+
'homo_sample_normed': torch.zeros((3,3), dtype=torch.float),
|
| 167 |
+
'gt_matches': gt_matches,
|
| 168 |
+
'gt_matches_mask': torch.zeros((1,), dtype=torch.bool),
|
| 169 |
+
'origin_img_size0': origin_img_size0, # H W
|
| 170 |
+
'origin_img_size1': origin_img_size1,
|
| 171 |
+
'scale0': scale0, # [scale_w, scale_h]
|
| 172 |
+
'scale1': scale1,
|
| 173 |
+
'dataset_name': 'MegaDepth',
|
| 174 |
+
'scene_id': self.scene_id,
|
| 175 |
+
'pair_id': idx,
|
| 176 |
+
'pair_names': (img_path0, img_path1),
|
| 177 |
+
'rel_pair_names': (img_path0, img_path1)
|
| 178 |
+
}
|
| 179 |
+
|
| 180 |
+
if self.gt_2D_matches is not None:
|
| 181 |
+
data.update({'gt_2D_matches': torch.from_numpy(self.gt_2D_matches[idx]).to(torch.float)}) # N * 4
|
| 182 |
+
|
| 183 |
+
if self.gt_matches is not None:
|
| 184 |
+
gt_matches_ = self.gt_matches[idx]
|
| 185 |
+
if isinstance(gt_matches_, str):
|
| 186 |
+
gt_matches_ = np.load(osp.join(self.root_dir, self.dataset_name, gt_matches_), allow_pickle=True)
|
| 187 |
+
gt_matches_ = torch.from_numpy(gt_matches_).to(torch.float) # N * 4: mkpts0, mkpts1
|
| 188 |
+
# Warp mkpts1 by sampled homo:
|
| 189 |
+
num = min(len(gt_matches_), self.gt_matches_padding_n)
|
| 190 |
+
gt_matches[:num] = gt_matches_[:num]
|
| 191 |
+
|
| 192 |
+
data.update({"gt_matches": gt_matches, 'gt_matches_mask': torch.ones((1,), dtype=torch.bool), 'norm_pixel_mat': torch.zeros((3,3), dtype=torch.float), "homo_sample_normed": torch.zeros((3,3), dtype=torch.float)})
|
| 193 |
+
|
| 194 |
+
if mask0 is not None: # img_padding is True
|
| 195 |
+
if self.coarse_scale:
|
| 196 |
+
if self.fix_bias:
|
| 197 |
+
[ts_mask_0, ts_mask_1] = F.interpolate(torch.stack([mask0, mask1], dim=0)[None].float(),
|
| 198 |
+
size=((image0.shape[1]-1)//8+1, (image0.shape[2]-1)//8+1),
|
| 199 |
+
mode='nearest',
|
| 200 |
+
recompute_scale_factor=False)[0].bool()
|
| 201 |
+
else:
|
| 202 |
+
[ts_mask_0, ts_mask_1] = F.interpolate(torch.stack([mask0, mask1], dim=0)[None].float(),
|
| 203 |
+
scale_factor=self.coarse_scale,
|
| 204 |
+
mode='nearest',
|
| 205 |
+
recompute_scale_factor=False)[0].bool()
|
| 206 |
+
if self.fp16:
|
| 207 |
+
data.update({'mask0': ts_mask_0, 'mask1': ts_mask_1})
|
| 208 |
+
else:
|
| 209 |
+
data.update({'mask0': ts_mask_0, 'mask1': ts_mask_1})
|
| 210 |
+
|
| 211 |
+
if self.load_origin_rgb:
|
| 212 |
+
data.update({"image0_rgb_origin": torch.from_numpy(np.array(Image.open(img_name0).convert("RGB"))).permute(2,0,1) / 255., "image1_rgb_origin": torch.from_numpy(np.array(Image.open(img_name1).convert("RGB"))).permute(2,0,1)/ 255.})
|
| 213 |
+
|
| 214 |
+
return data
|
imcui/third_party/MatchAnything/tools/evaluate_datasets.py
CHANGED
|
@@ -25,8 +25,7 @@ from src.utils.homography_utils import warp_points
|
|
| 25 |
from src.datasets.common_data_pair import CommonDataset
|
| 26 |
from src.utils.metrics import error_auc
|
| 27 |
from tools_utils.plot import plot_matches, warp_img_and_blend, epipolar_error
|
| 28 |
-
|
| 29 |
-
from pairs_match_and_propogation.utils.data_io import save_h5
|
| 30 |
|
| 31 |
def parse_args():
|
| 32 |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
|
|
| 25 |
from src.datasets.common_data_pair import CommonDataset
|
| 26 |
from src.utils.metrics import error_auc
|
| 27 |
from tools_utils.plot import plot_matches, warp_img_and_blend, epipolar_error
|
| 28 |
+
from tools_utils.data_io import save_h5
|
|
|
|
| 29 |
|
| 30 |
def parse_args():
|
| 31 |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
imcui/third_party/MatchAnything/tools/tools_utils/data_io.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pickle
|
| 2 |
+
import h5py
|
| 3 |
+
import os
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
|
| 8 |
+
def dict_to_cuda(data_dict):
|
| 9 |
+
data_dict_cuda = {}
|
| 10 |
+
for k, v in data_dict.items():
|
| 11 |
+
if isinstance(v, torch.Tensor):
|
| 12 |
+
data_dict_cuda[k] = v.cuda()
|
| 13 |
+
elif isinstance(v, dict):
|
| 14 |
+
data_dict_cuda[k] = dict_to_cuda(v)
|
| 15 |
+
elif isinstance(v, list):
|
| 16 |
+
data_dict_cuda[k] = list_to_cuda(v)
|
| 17 |
+
else:
|
| 18 |
+
data_dict_cuda[k] = v
|
| 19 |
+
return data_dict_cuda
|
| 20 |
+
|
| 21 |
+
def list_to_cuda(data_list):
|
| 22 |
+
data_list_cuda = []
|
| 23 |
+
for obj in data_list:
|
| 24 |
+
if isinstance(obj, torch.Tensor):
|
| 25 |
+
data_list_cuda.append(obj.cuda())
|
| 26 |
+
elif isinstance(obj, dict):
|
| 27 |
+
data_list_cuda.append(dict_to_cuda(obj))
|
| 28 |
+
elif isinstance(obj, list):
|
| 29 |
+
data_list_cuda.append(list_to_cuda(obj))
|
| 30 |
+
else:
|
| 31 |
+
data_list_cuda.append(obj)
|
| 32 |
+
return data_list_cuda
|
| 33 |
+
|
| 34 |
+
def save_obj(obj, name ):
|
| 35 |
+
with open(name, 'wb') as f:
|
| 36 |
+
pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)
|
| 37 |
+
|
| 38 |
+
def load_obj(name):
|
| 39 |
+
with open(name, 'rb') as f:
|
| 40 |
+
return pickle.load(f)
|
| 41 |
+
|
| 42 |
+
def load_h5(file_path, transform_slash=True, parallel=False):
|
| 43 |
+
"""load the whole h5 file into memory (not memmaped)
|
| 44 |
+
TODO: Loading data in parallel
|
| 45 |
+
"""
|
| 46 |
+
with h5py.File(file_path, 'r') as f:
|
| 47 |
+
# if parallel:
|
| 48 |
+
# Parallel()
|
| 49 |
+
data = {k if (not transform_slash) or (not isinstance(k, str)) else k.replace('+', '/'): v.__array__() \
|
| 50 |
+
for k, v in f.items()}
|
| 51 |
+
return data
|
| 52 |
+
|
| 53 |
+
def save_h5(dict_to_save, filename, transform_slash=True, verbose=False, as_half=False):
|
| 54 |
+
"""Saves dictionary to hdf5 file"""
|
| 55 |
+
with h5py.File(filename, 'w') as f:
|
| 56 |
+
for key in tqdm(dict_to_save, disable=not verbose): # h5py doesn't allow '/' in object name (will leads to sub-group)
|
| 57 |
+
if isinstance(key, str):
|
| 58 |
+
save_key = key.replace('/', '+') if transform_slash else key
|
| 59 |
+
else:
|
| 60 |
+
save_key = key
|
| 61 |
+
if as_half:
|
| 62 |
+
try:
|
| 63 |
+
dt = dict_to_save[key].dtype
|
| 64 |
+
if (dt == np.float32) and (dt != np.float16):
|
| 65 |
+
data = dict_to_save[key].astype(np.float16)
|
| 66 |
+
else:
|
| 67 |
+
data = dict_to_save[key]
|
| 68 |
+
except:
|
| 69 |
+
data = dict_to_save[key]
|
| 70 |
+
f.create_dataset(save_key,
|
| 71 |
+
data=data)
|
| 72 |
+
else:
|
| 73 |
+
f.create_dataset(save_key,
|
| 74 |
+
data=dict_to_save[key])
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def load_calib(calib_fullpath_list, subset_index=None):
|
| 78 |
+
"""Load all IMC calibration files and create a dictionary."""
|
| 79 |
+
|
| 80 |
+
calib = {}
|
| 81 |
+
if subset_index is None:
|
| 82 |
+
for _calib_file in calib_fullpath_list:
|
| 83 |
+
img_name = os.path.splitext(os.path.basename(_calib_file))[0].replace(
|
| 84 |
+
"calibration_", ""
|
| 85 |
+
)
|
| 86 |
+
calib[img_name] = load_h5(_calib_file)
|
| 87 |
+
else:
|
| 88 |
+
for idx in subset_index:
|
| 89 |
+
_calib_file = calib_fullpath_list[idx]
|
| 90 |
+
img_name = os.path.splitext(os.path.basename(_calib_file))[0].replace(
|
| 91 |
+
"calibration_", ""
|
| 92 |
+
)
|
| 93 |
+
calib[img_name] = load_h5(_calib_file)
|
| 94 |
+
return calib
|