Spaces:
Sleeping
Sleeping
| import json | |
| import os | |
| import requests | |
| import altair as alt | |
| import extra_streamlit_components as stx | |
| import numpy as np | |
| import pandas as pd | |
| import streamlit as st | |
| import streamlit.components.v1 as components | |
| from bs4 import BeautifulSoup | |
| from datasets import load_dataset, Dataset, load_from_disk | |
| from huggingface_hub import login | |
| from streamlit_agraph import agraph, Node, Edge, Config | |
| from streamlit_extras.switch_page_button import switch_page | |
| from streamlit_extras.no_default_selectbox import selectbox | |
| from sklearn.svm import LinearSVC | |
| SCORE_NAME_MAPPING = {'clip': 'clip_score', 'rank': 'msq_score', 'pop': 'model_download_count'} | |
| class GalleryApp: | |
| def __init__(self, promptBook, images_ds): | |
| self.promptBook = promptBook | |
| self.images_ds = images_ds | |
| # init gallery state | |
| if 'gallery_state' not in st.session_state: | |
| st.session_state.gallery_state = {} | |
| # initialize selected_dict | |
| if 'selected_dict' not in st.session_state: | |
| st.session_state['selected_dict'] = {} | |
| if 'gallery_focus' not in st.session_state: | |
| st.session_state.gallery_focus = {'tag': None, 'prompt': None} | |
| def gallery_standard(self, items, col_num, info): | |
| rows = len(items) // col_num + 1 | |
| containers = [st.container() for _ in range(rows)] | |
| for idx in range(0, len(items), col_num): | |
| row_idx = idx // col_num | |
| with containers[row_idx]: | |
| cols = st.columns(col_num) | |
| for j in range(col_num): | |
| if idx + j < len(items): | |
| with cols[j]: | |
| # show image | |
| # image = self.images_ds[items.iloc[idx + j]['row_idx'].item()]['image'] | |
| image = f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{items.iloc[idx + j]['image_id']}.png" | |
| st.image(image, use_column_width=True) | |
| # handel checkbox information | |
| prompt_id = items.iloc[idx + j]['prompt_id'] | |
| modelVersion_id = items.iloc[idx + j]['modelVersion_id'] | |
| check_init = True if modelVersion_id in st.session_state.selected_dict.get(prompt_id, []) else False | |
| # st.write("Position: ", idx + j) | |
| # show checkbox | |
| st.checkbox('Select', key=f'select_{prompt_id}_{modelVersion_id}', value=check_init) | |
| # show selected info | |
| for key in info: | |
| st.write(f"**{key}**: {items.iloc[idx + j][key]}") | |
| def gallery_graph(self, items): | |
| items = load_tsne_coordinates(items) | |
| # sort items to be popularity from low to high, so that most popular ones will be on the top | |
| items = items.sort_values(by=['model_download_count'], ascending=True).reset_index(drop=True) | |
| scale = 50 | |
| items.loc[:, 'x'] = items['x'] * scale | |
| items.loc[:, 'y'] = items['y'] * scale | |
| nodes = [] | |
| edges = [] | |
| for idx in items.index: | |
| # if items.loc[idx, 'modelVersion_id'] in st.session_state.selected_dict.get(items.loc[idx, 'prompt_id'], 0): | |
| # opacity = 0.2 | |
| # else: | |
| # opacity = 1.0 | |
| nodes.append(Node(id=items.loc[idx, 'image_id'], | |
| # label=str(items.loc[idx, 'model_name']), | |
| title=f"model name: {items.loc[idx, 'model_name']}\nmodelVersion name: {items.loc[idx, 'modelVersion_name']}\nclip score: {items.loc[idx, 'clip_score']}\nmcos score: {items.loc[idx, 'mcos_score']}\npopularity: {items.loc[idx, 'model_download_count']}", | |
| size=20, | |
| shape='image', | |
| image=f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{items.loc[idx, 'image_id']}.png", | |
| x=items.loc[idx, 'x'].item(), | |
| y=items.loc[idx, 'y'].item(), | |
| # fixed=True, | |
| color={'background': '#E0E0E1', 'border': '#ffffff', 'highlight': {'border': '#F04542'}}, | |
| # opacity=opacity, | |
| shadow={'enabled': True, 'color': 'rgba(0,0,0,0.4)', 'size': 10, 'x': 1, 'y': 1}, | |
| borderWidth=2, | |
| shapeProperties={'useBorderWithImage': True}, | |
| ) | |
| ) | |
| config = Config(width='100%', | |
| height='600', | |
| directed=True, | |
| physics=False, | |
| hierarchical=False, | |
| interaction={'navigationButtons': True, 'dragNodes': False, 'multiselect': False}, | |
| # **kwargs | |
| ) | |
| return agraph(nodes=nodes, | |
| edges=edges, | |
| config=config, | |
| ) | |
| def selection_panel(self, items): | |
| # temperal function | |
| selecters = st.columns([1, 4]) | |
| if 'score_weights' not in st.session_state: | |
| # st.session_state.score_weights = [1.0, 0.8, 0.2, 0.8] | |
| st.session_state.score_weights = [1.0, 0.8, 0.2] | |
| # select sort type | |
| with selecters[0]: | |
| sort_type = st.selectbox('Sort by', ['Scores', 'IDs and Names']) | |
| if sort_type == 'Scores': | |
| sort_by = 'weighted_score_sum' | |
| # select other options | |
| with selecters[1]: | |
| if sort_type == 'IDs and Names': | |
| sub_selecters = st.columns([3]) | |
| # select sort by | |
| with sub_selecters[0]: | |
| sort_by = st.selectbox('Sort by', | |
| ['model_name', 'model_id', 'modelVersion_name', 'modelVersion_id', 'norm_nsfw'], | |
| label_visibility='hidden') | |
| continue_idx = 1 | |
| else: | |
| # add custom weights | |
| sub_selecters = st.columns([1, 1, 1]) | |
| with sub_selecters[0]: | |
| clip_weight = st.number_input('Clip Score Weight', min_value=-100.0, max_value=100.0, value=1.0, step=0.1, help='the weight for normalized clip score') | |
| with sub_selecters[1]: | |
| mcos_weight = st.number_input('Dissimilarity Weight', min_value=-100.0, max_value=100.0, value=0.8, step=0.1, help='the weight for m(eam) s(imilarity) q(antile) score for measuring distinctiveness') | |
| with sub_selecters[2]: | |
| pop_weight = st.number_input('Popularity Weight', min_value=-100.0, max_value=100.0, value=0.2, step=0.1, help='the weight for normalized popularity score') | |
| items.loc[:, 'weighted_score_sum'] = round(items[f'norm_clip'] * clip_weight + items[f'norm_mcos'] * mcos_weight + items[ | |
| 'norm_pop'] * pop_weight, 4) | |
| continue_idx = 3 | |
| # save latest weights | |
| st.session_state.score_weights[0] = round(clip_weight, 2) | |
| st.session_state.score_weights[1] = round(mcos_weight, 2) | |
| st.session_state.score_weights[2] = round(pop_weight, 2) | |
| # # select threshold | |
| # with sub_selecters[continue_idx]: | |
| # nsfw_threshold = st.number_input('NSFW Score Threshold', min_value=0.0, max_value=1.0, value=0.8, step=0.01, help='Only show models with nsfw score lower than this threshold, set 1.0 to show all images') | |
| # items = items[items['norm_nsfw'] <= nsfw_threshold].reset_index(drop=True) | |
| # | |
| # # save latest threshold | |
| # st.session_state.score_weights[3] = nsfw_threshold | |
| # # draw a distribution histogram | |
| # if sort_type == 'Scores': | |
| # try: | |
| # with st.expander('Show score distribution histogram and select score range'): | |
| # st.write('**Score distribution histogram**') | |
| # chart_space = st.container() | |
| # # st.write('Select the range of scores to show') | |
| # hist_data = pd.DataFrame(items[sort_by]) | |
| # mini = hist_data[sort_by].min().item() | |
| # mini = mini//0.1 * 0.1 | |
| # maxi = hist_data[sort_by].max().item() | |
| # maxi = maxi//0.1 * 0.1 + 0.1 | |
| # st.write('**Select the range of scores to show**') | |
| # r = st.slider('Select the range of scores to show', min_value=mini, max_value=maxi, value=(mini, maxi), step=0.05, label_visibility='collapsed') | |
| # with chart_space: | |
| # st.altair_chart(altair_histogram(hist_data, sort_by, r[0], r[1]), use_container_width=True) | |
| # # event_dict = altair_component(altair_chart=altair_histogram(hist_data, sort_by)) | |
| # # r = event_dict.get(sort_by) | |
| # if r: | |
| # items = items[(items[sort_by] >= r[0]) & (items[sort_by] <= r[1])].reset_index(drop=True) | |
| # # st.write(r) | |
| # except: | |
| # pass | |
| display_options = st.columns([1, 4]) | |
| with display_options[0]: | |
| # select order | |
| order = st.selectbox('Order', ['Ascending', 'Descending'], index=1 if sort_type == 'Scores' else 0) | |
| if order == 'Ascending': | |
| order = True | |
| else: | |
| order = False | |
| with display_options[1]: | |
| # select info to show | |
| info = st.multiselect('Show Info', | |
| ['model_name', 'model_id', 'modelVersion_name', 'modelVersion_id', | |
| 'weighted_score_sum', 'model_download_count', 'clip_score', 'mcos_score', | |
| 'nsfw_score', 'norm_nsfw'], | |
| default=sort_by) | |
| # apply sorting to dataframe | |
| items = items.sort_values(by=[sort_by], ascending=order).reset_index(drop=True) | |
| # select number of columns | |
| col_num = st.slider('Number of columns', min_value=1, max_value=9, value=4, step=1, key='col_num') | |
| return items, info, col_num | |
| def sidebar(self, items, prompt_id, note): | |
| with st.sidebar: | |
| # prompt_tags = self.promptBook['tag'].unique() | |
| # # sort tags by alphabetical order | |
| # prompt_tags = np.sort(prompt_tags)[::1] | |
| # | |
| # tag = st.selectbox('Select a tag', prompt_tags, index=5) | |
| # | |
| # items = self.promptBook[self.promptBook['tag'] == tag].reset_index(drop=True) | |
| # | |
| # prompts = np.sort(items['prompt'].unique())[::1] | |
| # | |
| # selected_prompt = st.selectbox('Select prompt', prompts, index=3) | |
| # mode = st.radio('Select a mode', ['Gallery', 'Graph'], horizontal=True, index=1) | |
| # items = items[items['prompt'] == selected_prompt].reset_index(drop=True) | |
| # st.title('Model Visualization and Retrieval') | |
| # show source | |
| if isinstance(note, str): | |
| if note.isdigit(): | |
| st.caption(f"`Source: civitai`") | |
| else: | |
| st.caption(f"`Source: {note}`") | |
| else: | |
| st.caption("`Source: Parti-prompts`") | |
| # show image metadata | |
| image_metadatas = ['prompt', 'negativePrompt', 'sampler', 'cfgScale', 'size', 'seed'] | |
| for key in image_metadatas: | |
| label = ' '.join(key.split('_')).capitalize() | |
| st.write(f"**{label}**") | |
| if items[key][0] == ' ': | |
| st.write('`None`') | |
| else: | |
| st.caption(f"{items[key][0]}") | |
| # for note as civitai image id, add civitai reference | |
| if isinstance(note, str) and note.isdigit(): | |
| try: | |
| st.write(f'**[Civitai Reference](https://civitai.com/images/{note})**') | |
| res = requests.get(f'https://civitai.com/images/{note}') | |
| # st.write(res.text) | |
| soup = BeautifulSoup(res.text, 'html.parser') | |
| image_section = soup.find('div', {'class': 'mantine-12rlksp'}) | |
| image_url = image_section.find('img')['src'] | |
| st.image(image_url, use_column_width=True) | |
| except: | |
| pass | |
| # return prompt_tags, tag, prompt_id, items | |
| def app(self): | |
| st.write('### Model Visualization and Retrieval') | |
| # st.write('This is a gallery of images generated by the models') | |
| # build the tabular view | |
| prompt_tags = self.promptBook['tag'].unique() | |
| # sort tags by alphabetical order | |
| prompt_tags = np.sort(prompt_tags)[::1].tolist() | |
| # chosen_data = [stx.TabBarItemData(id=tag, title=tag, description='') for tag in prompt_tags] | |
| # tag = stx.tab_bar(chosen_data, key='tag', default='food') | |
| # save tag to session state on change | |
| tag = st.radio('Select a tag', prompt_tags, index=5, horizontal=True, key='tag', label_visibility='collapsed') | |
| # tabs = st.tabs(prompt_tags) | |
| # for i in range(len(prompt_tags)): | |
| # with tabs[i]: | |
| # tag = prompt_tags[i] | |
| items = self.promptBook[self.promptBook['tag'] == tag].reset_index(drop=True) | |
| prompts = np.sort(items['prompt'].unique())[::1].tolist() | |
| # st.caption('Select a prompt') | |
| subset_selector = st.columns([3, 1]) | |
| with subset_selector[0]: | |
| selected_prompt = selectbox('Select prompt', prompts, key=f'prompt_{tag}', no_selection_label='---', label_visibility='collapsed', index=0) | |
| # st.session_state.prompt_idx_last_time = prompts.index(selected_prompt) if selected_prompt else 0 | |
| if selected_prompt is None: | |
| # st.markdown(':orange[Please select a prompt above👆]') | |
| st.write('**Feel free to navigate among tags and pages! Your selection will be saved within one log-in session.**') | |
| with subset_selector[-1]: | |
| st.write(':orange[👈 **Please select a prompt**]') | |
| else: | |
| items = items[items['prompt'] == selected_prompt].reset_index(drop=True) | |
| prompt_id = items['prompt_id'].unique()[0] | |
| note = items['note'].unique()[0] | |
| # add state to session state | |
| if prompt_id not in st.session_state.gallery_state: | |
| st.session_state.gallery_state[prompt_id] = 'graph' | |
| # add focus to session state | |
| st.session_state.gallery_focus['tag'] = tag | |
| st.session_state.gallery_focus['prompt'] = selected_prompt | |
| # add safety check for some prompts | |
| safety_check = True | |
| # load unsafe prompts | |
| unsafe_prompts = json.load(open('./data/unsafe_prompts.json', 'r')) | |
| for prompt_tag in prompt_tags: | |
| if prompt_tag not in unsafe_prompts: | |
| unsafe_prompts[prompt_tag] = [] | |
| # # manually add unsafe prompts | |
| # unsafe_prompts['world knowledge'] = [83] | |
| # unsafe_prompts['abstract'] = [1, 3] | |
| if int(prompt_id.item()) in unsafe_prompts[tag]: | |
| st.warning('This prompt may contain unsafe content. They might be offensive, depressing, or sexual.') | |
| safety_check = st.checkbox('I understand that this prompt may contain unsafe content. Show these images anyway.', key=f'safety_{prompt_id}') | |
| print('current state: ', st.session_state.gallery_state[prompt_id]) | |
| if st.session_state.gallery_state[prompt_id] == 'graph': | |
| if safety_check: | |
| self.graph_mode(prompt_id, items) | |
| with subset_selector[-1]: | |
| has_selection = False | |
| try: | |
| if len(st.session_state.selected_dict.get(prompt_id, [])) > 0: | |
| has_selection = True | |
| except: | |
| pass | |
| if has_selection: | |
| checkout = st.button('Check out selections', use_container_width=True, type='primary') | |
| if checkout: | |
| print('checkout') | |
| st.session_state.gallery_state[prompt_id] = 'gallery' | |
| print(st.session_state.gallery_state[prompt_id]) | |
| st.experimental_rerun() | |
| else: | |
| st.write(':orange[👇 **Select images you like below**]') | |
| elif st.session_state.gallery_state[prompt_id] == 'gallery': | |
| items = items[items['modelVersion_id'].isin(st.session_state.selected_dict[prompt_id])].reset_index( | |
| drop=True) | |
| self.gallery_mode(prompt_id, items) | |
| with subset_selector[-1]: | |
| state_operations = st.columns([1, 1]) | |
| with state_operations[0]: | |
| back = st.button('Back to 🖼️', use_container_width=True) | |
| if back: | |
| st.session_state.gallery_state[prompt_id] = 'graph' | |
| st.experimental_rerun() | |
| with state_operations[1]: | |
| forward = st.button('Check out', use_container_width=True, type='primary', on_click=self.submit_actions, args=('Continue', prompt_id)) | |
| if forward: | |
| switch_page('ranking') | |
| try: | |
| self.sidebar(items, prompt_id, note) | |
| except: | |
| pass | |
| def graph_mode(self, prompt_id, items): | |
| graph_cols = st.columns([3, 1]) | |
| # prompt = st.chat_input(f"Selected model version ids: {str(st.session_state.selected_dict.get(prompt_id, []))}", | |
| # disabled=False, key=f'{prompt_id}') | |
| # if prompt: | |
| # switch_page("ranking") | |
| with graph_cols[0]: | |
| graph_space = st.empty() | |
| with graph_space.container(): | |
| return_value = self.gallery_graph(items) | |
| with graph_cols[1]: | |
| if return_value: | |
| with st.form(key=f'{prompt_id}'): | |
| image_url = f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{return_value}.png" | |
| st.image(image_url) | |
| item = items[items['image_id'] == return_value].reset_index(drop=True).iloc[0] | |
| modelVersion_id = item['modelVersion_id'] | |
| # handle selection | |
| if 'selected_dict' in st.session_state: | |
| if item['prompt_id'] not in st.session_state.selected_dict: | |
| st.session_state.selected_dict[item['prompt_id']] = [] | |
| if modelVersion_id in st.session_state.selected_dict[item['prompt_id']]: | |
| checked = True | |
| else: | |
| checked = False | |
| if checked: | |
| # deselect = st.button('Deselect', key=f'select_{item["prompt_id"]}_{item["modelVersion_id"]}', use_container_width=True) | |
| deselect = st.form_submit_button('Deselect', use_container_width=True) | |
| if deselect: | |
| st.session_state.selected_dict[item['prompt_id']].remove(item['modelVersion_id']) | |
| self.remove_ranking_states(item['prompt_id']) | |
| st.experimental_rerun() | |
| else: | |
| # select = st.button('Select', key=f'select_{item["prompt_id"]}_{item["modelVersion_id"]}', use_container_width=True, type='primary') | |
| select = st.form_submit_button('Select', use_container_width=True, type='primary') | |
| if select: | |
| st.session_state.selected_dict[item['prompt_id']].append(item['modelVersion_id']) | |
| self.remove_ranking_states(item['prompt_id']) | |
| st.experimental_rerun() | |
| # st.write(item) | |
| infos = ['model_name', 'modelVersion_name', 'model_download_count', 'clip_score', 'mcos_score', | |
| 'nsfw_score'] | |
| infos_df = item[infos] | |
| # rename columns | |
| infos_df = infos_df.rename(index={'model_name': 'Model', 'modelVersion_name': 'Version', 'model_download_count': 'Downloads', 'clip_score': 'Clip Score', 'mcos_score': 'mcos Score', 'nsfw_score': 'NSFW Score'}) | |
| st.table(infos_df) | |
| # for info in infos: | |
| # st.write(f"**{info}**:") | |
| # st.write(item[info]) | |
| else: | |
| st.info('Please click on an image to show') | |
| def gallery_mode(self, prompt_id, items): | |
| items, info, col_num = self.selection_panel(items) | |
| # if 'selected_dict' in st.session_state: | |
| # # st.write('checked: ', str(st.session_state.selected_dict.get(prompt_id, []))) | |
| # dynamic_weight_options = ['Grid Search', 'SVM', 'Greedy'] | |
| # dynamic_weight_panel = st.columns(len(dynamic_weight_options)) | |
| # | |
| # if len(st.session_state.selected_dict.get(prompt_id, [])) > 0: | |
| # btn_disable = False | |
| # else: | |
| # btn_disable = True | |
| # | |
| # for i in range(len(dynamic_weight_options)): | |
| # method = dynamic_weight_options[i] | |
| # with dynamic_weight_panel[i]: | |
| # btn = st.button(method, use_container_width=True, disabled=btn_disable, on_click=self.dynamic_weight, args=(prompt_id, items, method)) | |
| # prompt = st.chat_input(f"Selected model version ids: {str(st.session_state.selected_dict.get(prompt_id, []))}", disabled=False, key=f'{prompt_id}') | |
| # if prompt: | |
| # switch_page("ranking") | |
| # with st.form(key=f'{prompt_id}'): | |
| # buttons = st.columns([1, 1, 1]) | |
| # buttons_space = st.columns([1, 1, 1]) | |
| gallery_space = st.empty() | |
| # with buttons_space[0]: | |
| # continue_btn = st.button('Proceed selections to ranking', use_container_width=True, type='primary') | |
| # if continue_btn: | |
| # # self.submit_actions('Continue', prompt_id) | |
| # switch_page("ranking") | |
| # | |
| # with buttons_space[1]: | |
| # deselect_btn = st.button('Deselect All', use_container_width=True) | |
| # if deselect_btn: | |
| # self.submit_actions('Deselect', prompt_id) | |
| # | |
| # with buttons_space[2]: | |
| # refresh_btn = st.button('Refresh', on_click=gallery_space.empty, use_container_width=True) | |
| with gallery_space.container(): | |
| self.gallery_standard(items, col_num, info) | |
| def submit_actions(self, status, prompt_id): | |
| # remove counter from session state | |
| # st.session_state.pop('counter', None) | |
| self.remove_ranking_states('prompt_id') | |
| if status == 'Select': | |
| modelVersions = self.promptBook[self.promptBook['prompt_id'] == prompt_id]['modelVersion_id'].unique() | |
| st.session_state.selected_dict[prompt_id] = modelVersions.tolist() | |
| print(st.session_state.selected_dict, 'select') | |
| st.experimental_rerun() | |
| elif status == 'Deselect': | |
| st.session_state.selected_dict[prompt_id] = [] | |
| print(st.session_state.selected_dict, 'deselect') | |
| st.experimental_rerun() | |
| # self.promptBook.loc[self.promptBook['prompt_id'] == prompt_id, 'checked'] = False | |
| elif status == 'Continue': | |
| st.session_state.selected_dict[prompt_id] = [] | |
| for key in st.session_state: | |
| keys = key.split('_') | |
| if keys[0] == 'select' and keys[1] == str(prompt_id): | |
| if st.session_state[key]: | |
| st.session_state.selected_dict[prompt_id].append(int(keys[2])) | |
| # switch_page("ranking") | |
| print(st.session_state.selected_dict, 'continue') | |
| # st.experimental_rerun() | |
| def dynamic_weight(self, prompt_id, items, method='Grid Search'): | |
| selected = items[ | |
| items['modelVersion_id'].isin(st.session_state.selected_dict[prompt_id])].reset_index(drop=True) | |
| optimal_weight = [0, 0, 0] | |
| if method == 'Grid Search': | |
| # grid search method | |
| top_ranking = len(items) * len(selected) | |
| for clip_weight in np.arange(-1, 1, 0.1): | |
| for mcos_weight in np.arange(-1, 1, 0.1): | |
| for pop_weight in np.arange(-1, 1, 0.1): | |
| weight_all = clip_weight*items[f'norm_clip'] + mcos_weight*items[f'norm_mcos'] + pop_weight*items['norm_pop'] | |
| weight_all_sorted = weight_all.sort_values(ascending=False).reset_index(drop=True) | |
| # print('weight_all_sorted:', weight_all_sorted) | |
| weight_selected = clip_weight*selected[f'norm_clip'] + mcos_weight*selected[f'norm_mcos'] + pop_weight*selected['norm_pop'] | |
| # get the index of values of weight_selected in weight_all_sorted | |
| rankings = [] | |
| for weight in weight_selected: | |
| rankings.append(weight_all_sorted.index[weight_all_sorted == weight].tolist()[0]) | |
| if sum(rankings) <= top_ranking: | |
| top_ranking = sum(rankings) | |
| print('current top ranking:', top_ranking, rankings) | |
| optimal_weight = [clip_weight, mcos_weight, pop_weight] | |
| print('optimal weight:', optimal_weight) | |
| elif method == 'SVM': | |
| # svm method | |
| print('start svm method') | |
| # get residual dataframe that contains models not selected | |
| residual = items[~items['modelVersion_id'].isin(selected['modelVersion_id'])].reset_index(drop=True) | |
| residual = residual[['norm_clip_crop', 'norm_mcos_crop', 'norm_pop']] | |
| residual = residual.to_numpy() | |
| selected = selected[['norm_clip_crop', 'norm_mcos_crop', 'norm_pop']] | |
| selected = selected.to_numpy() | |
| y = np.concatenate((np.full((len(selected), 1), -1), np.full((len(residual), 1), 1)), axis=0).ravel() | |
| X = np.concatenate((selected, residual), axis=0) | |
| # fit svm model, and get parameters for the hyperplane | |
| clf = LinearSVC(random_state=0, C=1.0, fit_intercept=False, dual='auto') | |
| clf.fit(X, y) | |
| optimal_weight = clf.coef_[0].tolist() | |
| print('optimal weight:', optimal_weight) | |
| pass | |
| elif method == 'Greedy': | |
| for idx in selected.index: | |
| # find which score is the highest, clip, mcos, or pop | |
| clip_score = selected.loc[idx, 'norm_clip_crop'] | |
| mcos_score = selected.loc[idx, 'norm_mcos_crop'] | |
| pop_score = selected.loc[idx, 'norm_pop'] | |
| if clip_score >= mcos_score and clip_score >= pop_score: | |
| optimal_weight[0] += 1 | |
| elif mcos_score >= clip_score and mcos_score >= pop_score: | |
| optimal_weight[1] += 1 | |
| elif pop_score >= clip_score and pop_score >= mcos_score: | |
| optimal_weight[2] += 1 | |
| # normalize optimal_weight | |
| optimal_weight = [round(weight/len(selected), 2) for weight in optimal_weight] | |
| print('optimal weight:', optimal_weight) | |
| print('optimal weight:', optimal_weight) | |
| st.session_state.score_weights[0: 3] = optimal_weight | |
| def remove_ranking_states(self, prompt_id): | |
| # for drag sort | |
| try: | |
| st.session_state.counter[prompt_id] = 0 | |
| st.session_state.ranking[prompt_id] = {} | |
| print('remove ranking states') | |
| except: | |
| print('no sort ranking states to remove') | |
| # for battles | |
| try: | |
| st.session_state.pointer[prompt_id] = {'left': 0, 'right': 1} | |
| print('remove battles states') | |
| except: | |
| print('no battles states to remove') | |
| # for page progress | |
| try: | |
| st.session_state.progress[prompt_id] = 'ranking' | |
| print('reset page progress states') | |
| except: | |
| print('no page progress states to be reset') | |
| # hist_data = pd.DataFrame(np.random.normal(42, 10, (200, 1)), columns=["x"]) | |
| def altair_histogram(hist_data, sort_by, mini, maxi): | |
| brushed = alt.selection_interval(encodings=['x'], name="brushed") | |
| chart = ( | |
| alt.Chart(hist_data) | |
| .mark_bar(opacity=0.7, cornerRadius=2) | |
| .encode(alt.X(f"{sort_by}:Q", bin=alt.Bin(maxbins=25)), y="count()") | |
| # .add_selection(brushed) | |
| # .properties(width=800, height=300) | |
| ) | |
| # Create a transparent rectangle for highlighting the range | |
| highlight = ( | |
| alt.Chart(pd.DataFrame({'x1': [mini], 'x2': [maxi]})) | |
| .mark_rect(opacity=0.3) | |
| .encode(x='x1', x2='x2') | |
| # .properties(width=800, height=300) | |
| ) | |
| # Layer the chart and the highlight rectangle | |
| layered_chart = alt.layer(chart, highlight) | |
| return layered_chart | |
| def load_hf_dataset(show_NSFW=False): | |
| # login to huggingface | |
| login(token=os.environ.get("HF_TOKEN")) | |
| # load from huggingface | |
| roster = pd.DataFrame(load_dataset('MAPS-research/GEMRec-Roster', split='train')) | |
| promptBook = pd.DataFrame(load_dataset('MAPS-research/GEMRec-Metadata', split='train')) | |
| # images_ds = load_from_disk(os.path.join(os.getcwd(), 'data', 'promptbook')) | |
| images_ds = None # set to None for now since we use s3 bucket to store images | |
| # # process dataset | |
| # roster = roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name', | |
| # 'model_download_count']].drop_duplicates().reset_index(drop=True) | |
| # add 'custom_score_weights' column to promptBook if not exist | |
| if 'weighted_score_sum' not in promptBook.columns: | |
| promptBook.loc[:, 'weighted_score_sum'] = 0 | |
| # merge roster and promptbook | |
| promptBook = promptBook.merge(roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name', 'model_download_count']], | |
| on=['model_id', 'modelVersion_id'], how='left') | |
| # add column to record current row index | |
| promptBook.loc[:, 'row_idx'] = promptBook.index | |
| # apply a nsfw filter | |
| if not show_NSFW: | |
| promptBook = promptBook[promptBook['norm_nsfw'] <= 0.8].reset_index(drop=True) | |
| print('nsfw filter applied', len(promptBook)) | |
| # add a column that adds up 'norm_clip', 'norm_mcos', and 'norm_pop' | |
| score_weights = [1.0, 0.8, 0.2] | |
| promptBook.loc[:, 'total_score'] = round(promptBook['norm_clip'] * score_weights[0] + promptBook['norm_mcos'] * score_weights[1] + promptBook['norm_pop'] * score_weights[2], 4) | |
| return roster, promptBook, images_ds | |
| def load_tsne_coordinates(items): | |
| # load tsne coordinates | |
| tsne_df = pd.read_parquet('./data/feats_tsne.parquet') | |
| # print(tsne_df['modelVersion_id'].dtype) | |
| # print('before merge:', items) | |
| items = items.merge(tsne_df, on=['modelVersion_id', 'prompt_id'], how='left') | |
| # print('after merge:', items) | |
| return items | |
| if __name__ == "__main__": | |
| st.set_page_config(page_title="Model Coffer Gallery", page_icon="🖼️", layout="wide") | |
| if 'user_id' not in st.session_state: | |
| st.warning('Please log in first.') | |
| home_btn = st.button('Go to Home Page') | |
| if home_btn: | |
| switch_page("home") | |
| else: | |
| # st.write('You have already logged in as ' + st.session_state.user_id[0]) | |
| roster, promptBook, images_ds = load_hf_dataset(st.session_state.show_NSFW) | |
| # print(promptBook.columns) | |
| # # initialize selected_dict | |
| # if 'selected_dict' not in st.session_state: | |
| # st.session_state['selected_dict'] = {} | |
| app = GalleryApp(promptBook=promptBook, images_ds=images_ds) | |
| app.app() | |
| with open('./css/style.css') as f: | |
| st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True) | |