Spaces:
Running
Running
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,111 +0,0 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
import os
|
| 3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 4 |
-
from langchain_community.document_loaders import PyPDFLoader
|
| 5 |
-
from langchain_experimental.text_splitter import SemanticChunker
|
| 6 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
| 7 |
-
from langchain_community.vectorstores import FAISS
|
| 8 |
-
from langchain.memory import ConversationBufferMemory
|
| 9 |
-
|
| 10 |
-
# --- 1) إعداد الصفحة ---
|
| 11 |
-
st.title("💬 المحادثة التفاعلية - إدارة البيانات وحماية البيانات الشخصية")
|
| 12 |
-
local_file = "Policies001.pdf"
|
| 13 |
-
|
| 14 |
-
index_folder = "faiss_index"
|
| 15 |
-
|
| 16 |
-
# إضافة CSS مخصص لدعم النصوص من اليمين لليسار
|
| 17 |
-
st.markdown(
|
| 18 |
-
"""
|
| 19 |
-
<style>
|
| 20 |
-
.rtl {
|
| 21 |
-
direction: rtl;
|
| 22 |
-
text-align: right;
|
| 23 |
-
}
|
| 24 |
-
</style>
|
| 25 |
-
""",
|
| 26 |
-
unsafe_allow_html=True
|
| 27 |
-
)
|
| 28 |
-
|
| 29 |
-
# --- 2) تحميل أو بناء قاعدة بيانات FAISS ---
|
| 30 |
-
embeddings = HuggingFaceEmbeddings(
|
| 31 |
-
model_name="CAMeL-Lab/bert-base-arabic-camelbert-mix",
|
| 32 |
-
model_kwargs={"trust_remote_code": True}
|
| 33 |
-
)
|
| 34 |
-
|
| 35 |
-
if os.path.exists(index_folder):
|
| 36 |
-
# تحميل قاعدة البيانات إذا كانت موجودة
|
| 37 |
-
vectorstore = FAISS.load_local(index_folder, embeddings, allow_dangerous_deserialization=True)
|
| 38 |
-
else:
|
| 39 |
-
# تحميل PDF وتقسيم النصوص
|
| 40 |
-
loader = PyPDFLoader(local_file)
|
| 41 |
-
documents = loader.load()
|
| 42 |
-
|
| 43 |
-
text_splitter = SemanticChunker(
|
| 44 |
-
embeddings=embeddings,
|
| 45 |
-
breakpoint_threshold_type='percentile',
|
| 46 |
-
breakpoint_threshold_amount=90
|
| 47 |
-
)
|
| 48 |
-
chunked_docs = text_splitter.split_documents(documents)
|
| 49 |
-
|
| 50 |
-
# إنشاء قاعدة بيانات FAISS
|
| 51 |
-
vectorstore = FAISS.from_documents(chunked_docs, embeddings)
|
| 52 |
-
vectorstore.save_local(index_folder)
|
| 53 |
-
|
| 54 |
-
# --- 3) إعداد المسترجع ---
|
| 55 |
-
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
| 56 |
-
|
| 57 |
-
# --- 4) إعداد نموذج النص ---
|
| 58 |
-
model_name = "CohereForAI/c4ai-command-r7b-arabic-02-2025" # اسم النموذج
|
| 59 |
-
|
| 60 |
-
# التأكد من وجود توكن Hugging Face
|
| 61 |
-
hf_token = os.getenv("HF_TOKEN")
|
| 62 |
-
if hf_token is None:
|
| 63 |
-
st.error("Hugging Face token not found. Please set the 'HF_TOKEN' environment variable.")
|
| 64 |
-
st.stop()
|
| 65 |
-
|
| 66 |
-
# تحميل النموذج والمحول
|
| 67 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
|
| 68 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=hf_token)
|
| 69 |
-
|
| 70 |
-
# إعداد pipeline لتوليد النصوص
|
| 71 |
-
qa_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)
|
| 72 |
-
|
| 73 |
-
# --- 5) إعداد الذاكرة ---
|
| 74 |
-
memory = ConversationBufferMemory(
|
| 75 |
-
memory_key="chat_history",
|
| 76 |
-
return_messages=True
|
| 77 |
-
)
|
| 78 |
-
|
| 79 |
-
# --- 6) إدارة رسائل المستخدم ---
|
| 80 |
-
if "messages" not in st.session_state:
|
| 81 |
-
st.session_state["messages"] = [
|
| 82 |
-
{"role": "assistant", "content": "👋 مرحبًا! اسألني أي شيء عن إدارة البيانات وحماية البيانات الشخصية!"}
|
| 83 |
-
]
|
| 84 |
-
|
| 85 |
-
# عرض الرسائل الحالية
|
| 86 |
-
for msg in st.session_state["messages"]:
|
| 87 |
-
with st.chat_message(msg["role"]):
|
| 88 |
-
st.markdown(f'<div class="rtl">{msg["content"]}</div>', unsafe_allow_html=True)
|
| 89 |
-
|
| 90 |
-
# --- 7) إدخال المستخدم ---
|
| 91 |
-
user_input = st.chat_input("اكتب سؤالك هنا")
|
| 92 |
-
|
| 93 |
-
# --- 8) معالجة رسالة المستخدم ---
|
| 94 |
-
if user_input:
|
| 95 |
-
# عرض رسالة المستخدم
|
| 96 |
-
st.session_state["messages"].append({"role": "user", "content": user_input})
|
| 97 |
-
with st.chat_message("user"):
|
| 98 |
-
st.markdown(f'<div class="rtl">{user_input}</div>', unsafe_allow_html=True)
|
| 99 |
-
|
| 100 |
-
# استرجاع المستندات ذات الصلة
|
| 101 |
-
retrieved_docs = retriever.get_relevant_documents(user_input)
|
| 102 |
-
context = "\n".join([doc.page_content for doc in retrieved_docs])
|
| 103 |
-
full_input = f"السياق:\n{context}\n\nالسؤال:\n{user_input}"
|
| 104 |
-
|
| 105 |
-
# توليد الإجابة باستخدام النموذج
|
| 106 |
-
response = qa_pipeline(full_input, max_length=500, num_return_sequences=1)[0]["generated_text"]
|
| 107 |
-
|
| 108 |
-
# عرض الإجابة
|
| 109 |
-
st.session_state["messages"].append({"role": "assistant", "content": response})
|
| 110 |
-
with st.chat_message("assistant"):
|
| 111 |
-
st.markdown(f'<div class="rtl">{response}</div>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|