Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
# --- LANGCHAIN IMPORTS ---
|
| 5 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 6 |
+
from langchain_experimental.text_splitter import SemanticChunker
|
| 7 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 8 |
+
from langchain_community.vectorstores import FAISS
|
| 9 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 10 |
+
from langchain_community.chat_models import ChatOllama
|
| 11 |
+
from langchain.memory import ConversationBufferMemory
|
| 12 |
+
|
| 13 |
+
# 1) SET UP PAGE
|
| 14 |
+
st.title("💬 Conversational Chat - Data Management & Personal Data Protection")
|
| 15 |
+
local_file = "Policies001.pdf"
|
| 16 |
+
st.write(f"Loading local file: {local_file}")
|
| 17 |
+
index_folder = "faiss_index"
|
| 18 |
+
|
| 19 |
+
# 2) LOAD OR BUILD VECTORSTORE
|
| 20 |
+
embeddings = HuggingFaceEmbeddings(
|
| 21 |
+
model_name="CAMeL-Lab/bert-base-arabic-camelbert-mix",
|
| 22 |
+
model_kwargs={"trust_remote_code": True}
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
if os.path.exists(index_folder):
|
| 26 |
+
st.write("Loading existing FAISS index from disk...")
|
| 27 |
+
vectorstore = FAISS.load_local(index_folder, embeddings, allow_dangerous_deserialization=True)
|
| 28 |
+
else:
|
| 29 |
+
st.write("Building a new FAISS index...")
|
| 30 |
+
loader = PyPDFLoader(local_file)
|
| 31 |
+
documents = loader.load()
|
| 32 |
+
|
| 33 |
+
text_splitter = SemanticChunker(
|
| 34 |
+
embeddings=embeddings,
|
| 35 |
+
breakpoint_threshold_type='percentile',
|
| 36 |
+
breakpoint_threshold_amount=90
|
| 37 |
+
)
|
| 38 |
+
chunked_docs = text_splitter.split_documents(documents)
|
| 39 |
+
st.write(f"Document split into {len(chunked_docs)} chunks.")
|
| 40 |
+
|
| 41 |
+
vectorstore = FAISS.from_documents(chunked_docs, embeddings)
|
| 42 |
+
vectorstore.save_local(index_folder)
|
| 43 |
+
|
| 44 |
+
# 3) CREATE RETRIEVER
|
| 45 |
+
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
| 46 |
+
|
| 47 |
+
# 4) SET UP LLM + CONVERSATIONAL RETRIEVAL CHAIN
|
| 48 |
+
llm = ChatOllama(model="command-r7b-arabic")
|
| 49 |
+
|
| 50 |
+
# IMPORTANT: Memory object to store conversation
|
| 51 |
+
memory = ConversationBufferMemory(
|
| 52 |
+
memory_key="chat_history", # key used internally by the chain
|
| 53 |
+
return_messages=True # ensures we get the entire message history
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
| 57 |
+
llm=llm,
|
| 58 |
+
retriever=retriever,
|
| 59 |
+
memory=memory,
|
| 60 |
+
verbose=True # optional: prints chain's internal logs in the console
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# 5) MANAGE SESSION STATE FOR UI CHAT
|
| 64 |
+
if "messages" not in st.session_state:
|
| 65 |
+
st.session_state["messages"] = [
|
| 66 |
+
{"role": "assistant", "content": "👋 Hello! Ask me anything about Data Management & Personal Data Protection!"}
|
| 67 |
+
]
|
| 68 |
+
|
| 69 |
+
# Display existing messages in chat format
|
| 70 |
+
for msg in st.session_state["messages"]:
|
| 71 |
+
with st.chat_message(msg["role"]):
|
| 72 |
+
st.markdown(msg["content"])
|
| 73 |
+
|
| 74 |
+
# 6) CHAT INPUT
|
| 75 |
+
user_input = st.chat_input("Type your question...")
|
| 76 |
+
|
| 77 |
+
# 7) PROCESS NEW USER MESSAGE
|
| 78 |
+
if user_input:
|
| 79 |
+
# a) Display user message in UI
|
| 80 |
+
st.session_state["messages"].append({"role": "user", "content": user_input})
|
| 81 |
+
with st.chat_message("user"):
|
| 82 |
+
st.markdown(user_input)
|
| 83 |
+
|
| 84 |
+
# b) Run chain with conversation memory
|
| 85 |
+
# We pass user_input as the "question" to the chain.
|
| 86 |
+
response_dict = qa_chain({"question": user_input})
|
| 87 |
+
answer = response_dict["answer"]
|
| 88 |
+
|
| 89 |
+
# c) Display assistant response
|
| 90 |
+
st.session_state["messages"].append({"role": "assistant", "content": answer})
|
| 91 |
+
with st.chat_message("assistant"):
|
| 92 |
+
st.markdown(answer)
|