Upload 10 files
Browse files- lcm.py +117 -0
- main_v3.py +140 -0
- models.py +402 -0
- models/model.safetensors +3 -0
- models/model_org.safetensors +3 -0
- sar_1.png +0 -0
- sar_2.png +0 -0
- sar_3.png +0 -0
- sar_4.png +0 -0
- utils.py +347 -0
lcm.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 首先,确保安装了必要的库
|
| 2 |
+
# 你可以使用以下命令安装:
|
| 3 |
+
# pip install gradio diffusers transformers torch
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from diffusers import StableDiffusionPipeline
|
| 7 |
+
import torch
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import requests
|
| 10 |
+
from io import BytesIO
|
| 11 |
+
|
| 12 |
+
# 定义可用的扩散模型列表
|
| 13 |
+
AVAILABLE_MODELS = {
|
| 14 |
+
"Stable Diffusion v1.4": "CompVis/stable-diffusion-v1-4",
|
| 15 |
+
"Stable Diffusion v1.5": "runwayml/stable-diffusion-v1-5",
|
| 16 |
+
"Stable Diffusion 2.1": "stabilityai/stable-diffusion-2-1",
|
| 17 |
+
# 你可以根据需要添加更多模型
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
# 示例图片的URL列表
|
| 21 |
+
SAMPLE_IMAGES = {
|
| 22 |
+
"风景": "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/samples/landscape.jpg",
|
| 23 |
+
"人像": "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/samples/portrait.jpg",
|
| 24 |
+
"动物": "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/samples/animal.jpg",
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
# 使用缓存来存储已加载的模型,以避免重复加载
|
| 28 |
+
model_cache = {}
|
| 29 |
+
|
| 30 |
+
def load_model(model_name):
|
| 31 |
+
if model_name in model_cache:
|
| 32 |
+
return model_cache[model_name]
|
| 33 |
+
else:
|
| 34 |
+
model_id = AVAILABLE_MODELS[model_name]
|
| 35 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 36 |
+
model_id,
|
| 37 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 38 |
+
)
|
| 39 |
+
pipe = pipe.to("cuda") if torch.cuda.is_available() else pipe.to("cpu")
|
| 40 |
+
model_cache[model_name] = pipe
|
| 41 |
+
return pipe
|
| 42 |
+
|
| 43 |
+
def process_image(model_name, input_image, sample_choice):
|
| 44 |
+
# 如果用户选择使用示例图片,则下载示例图片
|
| 45 |
+
if sample_choice != "上传图片":
|
| 46 |
+
url = SAMPLE_IMAGES.get(sample_choice, SAMPLE_IMAGES["风景"])
|
| 47 |
+
response = requests.get(url)
|
| 48 |
+
input_image = Image.open(BytesIO(response.content)).convert("RGB")
|
| 49 |
+
|
| 50 |
+
# 加载所选模型
|
| 51 |
+
pipe = load_model(model_name)
|
| 52 |
+
|
| 53 |
+
# 生成图像(这里以文本提示为例,可以根据实际模型功能调整)
|
| 54 |
+
prompt = "A transformed version of the input image."
|
| 55 |
+
|
| 56 |
+
with torch.autocast("cuda" if torch.cuda.is_available() else "cpu"):
|
| 57 |
+
generated_image = pipe(prompt=prompt, init_image=input_image, strength=0.8).images[0]
|
| 58 |
+
|
| 59 |
+
return input_image, generated_image
|
| 60 |
+
|
| 61 |
+
# 定义 Gradio 接口
|
| 62 |
+
def main():
|
| 63 |
+
with gr.Blocks() as demo:
|
| 64 |
+
gr.Markdown("# Diffusers 扩散模型展示页面")
|
| 65 |
+
gr.Markdown("选择一个模型,上传一张图片或选择一个示例图片,然后点击转换按钮查看结果。")
|
| 66 |
+
|
| 67 |
+
with gr.Row():
|
| 68 |
+
model_dropdown = gr.Dropdown(
|
| 69 |
+
choices=list(AVAILABLE_MODELS.keys()),
|
| 70 |
+
value=list(AVAILABLE_MODELS.keys())[0],
|
| 71 |
+
label="选择模型"
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
with gr.Row():
|
| 75 |
+
sample_radio = gr.Radio(
|
| 76 |
+
choices=["上传图片"] + list(SAMPLE_IMAGES.keys()),
|
| 77 |
+
value="上传图片",
|
| 78 |
+
label="选择图片来源"
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
with gr.Row():
|
| 82 |
+
input_image = gr.Image(
|
| 83 |
+
type="pil",
|
| 84 |
+
label="上传图片",
|
| 85 |
+
visible=False
|
| 86 |
+
)
|
| 87 |
+
sample_image = gr.Image(
|
| 88 |
+
type="pil",
|
| 89 |
+
label="示例图片",
|
| 90 |
+
visible=False
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
# 根据用户选择显示上传或示例图片
|
| 94 |
+
def toggle_image(choice):
|
| 95 |
+
return {
|
| 96 |
+
"input_image": gr.update(visible=(choice == "上传图片")),
|
| 97 |
+
"sample_image": gr.update(visible=(choice != "上传图片"))
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
sample_radio.change(toggle_image, inputs=sample_radio, outputs=[input_image, sample_image])
|
| 101 |
+
|
| 102 |
+
convert_button = gr.Button("转换")
|
| 103 |
+
|
| 104 |
+
with gr.Row():
|
| 105 |
+
original_output = gr.Image(label="原图")
|
| 106 |
+
generated_output = gr.Image(label="生成图")
|
| 107 |
+
|
| 108 |
+
convert_button.click(
|
| 109 |
+
process_image,
|
| 110 |
+
inputs=[model_dropdown, input_image, sample_radio],
|
| 111 |
+
outputs=[original_output, generated_output]
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
demo.launch(server_port=16006)
|
| 115 |
+
|
| 116 |
+
if __name__ == "__main__":
|
| 117 |
+
main()
|
main_v3.py
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import argparse
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
import pandas as pd
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch as th
|
| 9 |
+
from torchvision import transforms
|
| 10 |
+
|
| 11 |
+
import diffusers
|
| 12 |
+
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler, LCMScheduler
|
| 13 |
+
import gc
|
| 14 |
+
from safetensors import safe_open
|
| 15 |
+
|
| 16 |
+
from models import SAR2OptUNetv3
|
| 17 |
+
from utils import update_args_from_yaml, safe_load
|
| 18 |
+
|
| 19 |
+
transform_sar = transforms.Compose([
|
| 20 |
+
transforms.ToTensor(),
|
| 21 |
+
transforms.Resize((256, 256)),
|
| 22 |
+
transforms.Normalize((0.5), (0.5)),
|
| 23 |
+
])
|
| 24 |
+
AVAILABLE_MODELS = {
|
| 25 |
+
"Sen12:LCM-Model": "models/model.safetensors",
|
| 26 |
+
"Sen12:Org-Model": "models/model_org.safetensors",
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
device = th.device('cuda:0' if th.cuda.is_available() else 'cpu')
|
| 30 |
+
|
| 31 |
+
def safe_load(model_path):
|
| 32 |
+
assert "safetensors" in model_path
|
| 33 |
+
state_dict = {}
|
| 34 |
+
with safe_open(model_path, framework="pt", device="cpu") as f:
|
| 35 |
+
for k in f.keys():
|
| 36 |
+
state_dict[k] = f.get_tensor(k)
|
| 37 |
+
return state_dict
|
| 38 |
+
|
| 39 |
+
unet_model = SAR2OptUNetv3(
|
| 40 |
+
sample_size=256,
|
| 41 |
+
in_channels=4,
|
| 42 |
+
out_channels=3,
|
| 43 |
+
layers_per_block=2,
|
| 44 |
+
block_out_channels=(128, 128, 256, 256, 512, 512),
|
| 45 |
+
down_block_types=(
|
| 46 |
+
"DownBlock2D",
|
| 47 |
+
"DownBlock2D",
|
| 48 |
+
"DownBlock2D",
|
| 49 |
+
"DownBlock2D",
|
| 50 |
+
"AttnDownBlock2D",
|
| 51 |
+
"DownBlock2D",
|
| 52 |
+
),
|
| 53 |
+
up_block_types=(
|
| 54 |
+
"UpBlock2D",
|
| 55 |
+
"AttnUpBlock2D",
|
| 56 |
+
"UpBlock2D",
|
| 57 |
+
"UpBlock2D",
|
| 58 |
+
"UpBlock2D",
|
| 59 |
+
"UpBlock2D",
|
| 60 |
+
),
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
print('load unet safetensos done!')
|
| 64 |
+
lcm_scheduler = LCMScheduler(num_train_timesteps=1000)
|
| 65 |
+
|
| 66 |
+
unet_model.to(device)
|
| 67 |
+
unet_model.eval()
|
| 68 |
+
|
| 69 |
+
model_kwargs = {}
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def predict(condition, nums_step, model_name):
|
| 73 |
+
unet_checkpoint = AVAILABLE_MODELS[model_name]
|
| 74 |
+
unet_model.load_state_dict(safe_load(unet_checkpoint), strict=True)
|
| 75 |
+
unet_model.eval().to(device)
|
| 76 |
+
with th.no_grad():
|
| 77 |
+
lcm_scheduler.set_timesteps(nums_step, device=device)
|
| 78 |
+
timesteps = lcm_scheduler.timesteps
|
| 79 |
+
pred_latent = th.randn(size=[1, 3, 256, 256], device=device)
|
| 80 |
+
condition = condition.convert("L")
|
| 81 |
+
condition = transform_sar(condition)
|
| 82 |
+
condition = th.unsqueeze(condition, 0)
|
| 83 |
+
condition = condition.to(device)
|
| 84 |
+
for timestep in timesteps:
|
| 85 |
+
latent_to_pred = th.cat((pred_latent, condition), dim=1)
|
| 86 |
+
model_pred = unet_model(latent_to_pred, timestep)
|
| 87 |
+
pred_latent, denoised = lcm_scheduler.step(
|
| 88 |
+
model_output=model_pred,
|
| 89 |
+
timestep=timestep,
|
| 90 |
+
sample=pred_latent,
|
| 91 |
+
return_dict=False)
|
| 92 |
+
sample = denoised.cpu()
|
| 93 |
+
|
| 94 |
+
sample = ((sample + 1) * 127.5).clamp(0, 255).to(th.uint8)
|
| 95 |
+
sample = sample.permute(0, 2, 3, 1)
|
| 96 |
+
sample = sample.contiguous()
|
| 97 |
+
sample = sample.cpu().numpy()
|
| 98 |
+
sample = sample.squeeze(0)
|
| 99 |
+
sample = Image.fromarray(sample)
|
| 100 |
+
return sample
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
demo = gr.Interface(
|
| 104 |
+
fn=predict,
|
| 105 |
+
inputs=[gr.Image(type="pil"),
|
| 106 |
+
gr.Slider(1, 1000),
|
| 107 |
+
gr.Dropdown(
|
| 108 |
+
choices=list(AVAILABLE_MODELS.keys()),
|
| 109 |
+
value=list(AVAILABLE_MODELS.keys())[0],
|
| 110 |
+
label="Choose the Model"),],
|
| 111 |
+
# gr.Radio(["Sent", "GF3"], label="Model", info="Which model to you want to use?"), ],
|
| 112 |
+
outputs=gr.Image(type="pil"),
|
| 113 |
+
examples=[
|
| 114 |
+
[os.path.join(os.path.dirname(__file__), "sar_1.png"), 8, "Sen12:LCM-Model"],
|
| 115 |
+
[os.path.join(os.path.dirname(__file__), "sar_2.png"), 16, "Sen12:LCM-Model"],
|
| 116 |
+
[os.path.join(os.path.dirname(__file__), "sar_3.png"), 500, "Sen12:Org-Model"],
|
| 117 |
+
[os.path.join(os.path.dirname(__file__), "sar_4.png"), 1000, "Sen12:Org-Model"],
|
| 118 |
+
],
|
| 119 |
+
title="SAR to Optical Image🚀",
|
| 120 |
+
description="""
|
| 121 |
+
# 🎯 Instruction
|
| 122 |
+
This is a project that converts SAR images into optical images, based on conditional diffusion.
|
| 123 |
+
|
| 124 |
+
Input a SAR image, and its corresponding optical image will be obtained.
|
| 125 |
+
|
| 126 |
+
## 📢 Inputs
|
| 127 |
+
- `condition`: the SAR image that you want to transfer.
|
| 128 |
+
- `timestep_respacing`: the number of iteration steps when inference.
|
| 129 |
+
|
| 130 |
+
## 🎉 Outputs
|
| 131 |
+
- The corresponding optical image.
|
| 132 |
+
|
| 133 |
+
**Paper** : [Guided Diffusion for Image Generation](https://arxiv.org/abs/2105.05233)
|
| 134 |
+
|
| 135 |
+
**Github** : https://github.com/Coordi777/Conditional_SAR2OPT
|
| 136 |
+
"""
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
if __name__ == "__main__":
|
| 140 |
+
demo.launch(server_port=16006)
|
models.py
ADDED
|
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from diffusers import StableDiffusionPipeline
|
| 2 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel, UNet2DModel
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
import os
|
| 7 |
+
import json
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class SAR2OptUNet(UNet2DConditionModel):
|
| 11 |
+
|
| 12 |
+
def forward(self, sample, timestep, encoder_hidden_states, timestep_cond, cross_attention_kwargs,
|
| 13 |
+
added_cond_kwargs):
|
| 14 |
+
default_overall_up_factor = 2 ** self.num_upsamplers
|
| 15 |
+
forward_upsample_size = False
|
| 16 |
+
upsample_size = None
|
| 17 |
+
|
| 18 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
| 19 |
+
forward_upsample_size = True
|
| 20 |
+
|
| 21 |
+
timesteps = timestep
|
| 22 |
+
if not torch.is_tensor(timesteps):
|
| 23 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
| 24 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
| 25 |
+
is_mps = sample.device.type == "mps"
|
| 26 |
+
if isinstance(timestep, float):
|
| 27 |
+
dtype = torch.float32 if is_mps else torch.float64
|
| 28 |
+
else:
|
| 29 |
+
dtype = torch.int32 if is_mps else torch.int64
|
| 30 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
| 31 |
+
elif len(timesteps.shape) == 0:
|
| 32 |
+
timesteps = timesteps[None].to(sample.device)
|
| 33 |
+
|
| 34 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 35 |
+
timesteps = timesteps.expand(sample.shape[0])
|
| 36 |
+
|
| 37 |
+
t_emb = self.time_proj(timesteps)
|
| 38 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
| 39 |
+
|
| 40 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
| 41 |
+
aug_emb = None
|
| 42 |
+
|
| 43 |
+
if added_cond_kwargs is not None:
|
| 44 |
+
if 'sar' in added_cond_kwargs:
|
| 45 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
| 46 |
+
aug_emb = self.add_embedding(image_embs)
|
| 47 |
+
else:
|
| 48 |
+
raise ValueError(
|
| 49 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
| 53 |
+
if self.time_embed_act is not None:
|
| 54 |
+
emb = self.time_embed_act(emb)
|
| 55 |
+
# 2. pre-process
|
| 56 |
+
sample = self.conv_in(sample)
|
| 57 |
+
|
| 58 |
+
# 3. down
|
| 59 |
+
down_block_res_samples = (sample,)
|
| 60 |
+
|
| 61 |
+
for downsample_block in self.down_blocks:
|
| 62 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
| 63 |
+
sample, res_samples = downsample_block(
|
| 64 |
+
hidden_states=sample,
|
| 65 |
+
temb=emb,
|
| 66 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 67 |
+
attention_mask=None,
|
| 68 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 69 |
+
encoder_attention_mask=None,
|
| 70 |
+
)
|
| 71 |
+
else:
|
| 72 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
| 73 |
+
|
| 74 |
+
down_block_res_samples += res_samples
|
| 75 |
+
|
| 76 |
+
# 4. mid
|
| 77 |
+
if self.mid_block is not None:
|
| 78 |
+
sample = self.mid_block(
|
| 79 |
+
sample,
|
| 80 |
+
emb,
|
| 81 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 82 |
+
attention_mask=None,
|
| 83 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 84 |
+
encoder_attention_mask=None,
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
# 5. up
|
| 88 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
| 89 |
+
is_final_block = i == len(self.up_blocks) - 1
|
| 90 |
+
|
| 91 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets):]
|
| 92 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
| 93 |
+
|
| 94 |
+
# if we have not reached the final block and need to forward the
|
| 95 |
+
# upsample size, we do it here
|
| 96 |
+
if not is_final_block and forward_upsample_size:
|
| 97 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
| 98 |
+
|
| 99 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
| 100 |
+
sample = upsample_block(
|
| 101 |
+
hidden_states=sample,
|
| 102 |
+
temb=emb,
|
| 103 |
+
res_hidden_states_tuple=res_samples,
|
| 104 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 105 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 106 |
+
upsample_size=upsample_size,
|
| 107 |
+
attention_mask=None,
|
| 108 |
+
encoder_attention_mask=None,
|
| 109 |
+
)
|
| 110 |
+
else:
|
| 111 |
+
sample = upsample_block(
|
| 112 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
# 6. post-process
|
| 116 |
+
if self.conv_norm_out:
|
| 117 |
+
sample = self.conv_norm_out(sample)
|
| 118 |
+
sample = self.conv_act(sample)
|
| 119 |
+
sample = self.conv_out(sample)
|
| 120 |
+
|
| 121 |
+
return sample
|
| 122 |
+
|
| 123 |
+
class SAREncoder(nn.Module):
|
| 124 |
+
def __init__(self,in_channels,ngf=50):
|
| 125 |
+
super(SAREncoder, self).__init__()
|
| 126 |
+
self.ngf = ngf
|
| 127 |
+
self.encoder = nn.Sequential(
|
| 128 |
+
# Encoder 1
|
| 129 |
+
nn.Conv2d(in_channels=in_channels, out_channels=self.ngf, kernel_size=3, stride=1, padding=1),
|
| 130 |
+
nn.BatchNorm2d(self.ngf),
|
| 131 |
+
nn.LeakyReLU(0.2, inplace=True),
|
| 132 |
+
|
| 133 |
+
# Encoder 2
|
| 134 |
+
nn.Conv2d(in_channels=self.ngf, out_channels=self.ngf * 2, kernel_size=3, stride=2, padding=1),# half
|
| 135 |
+
nn.BatchNorm2d(self.ngf * 2),
|
| 136 |
+
nn.LeakyReLU(0.2, inplace=True),
|
| 137 |
+
|
| 138 |
+
# Encoder 3
|
| 139 |
+
nn.Conv2d(in_channels=self.ngf * 2, out_channels=self.ngf * 4, kernel_size=3, stride=2, padding=1),# half
|
| 140 |
+
nn.BatchNorm2d(self.ngf * 4),
|
| 141 |
+
nn.LeakyReLU(0.2, inplace=True),
|
| 142 |
+
|
| 143 |
+
# Encoder 4
|
| 144 |
+
nn.Conv2d(in_channels=self.ngf * 4, out_channels=self.ngf * 5, kernel_size=3, stride=2, padding=1),# half
|
| 145 |
+
nn.BatchNorm2d(self.ngf * 5),
|
| 146 |
+
nn.LeakyReLU(0.2, inplace=True),
|
| 147 |
+
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
def forward(self, x):
|
| 151 |
+
bz = x.shape[0]
|
| 152 |
+
out = self.encoder(x).reshape(bz, -1, 1280)
|
| 153 |
+
return out
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
class SAR2OptUNetv2(UNet2DConditionModel):
|
| 157 |
+
def __init__(self, *args, **kwargs):
|
| 158 |
+
super().__init__(*args,**kwargs)
|
| 159 |
+
in_channels = 1
|
| 160 |
+
self.ngf = 2
|
| 161 |
+
self.sar_encoder = nn.Sequential(
|
| 162 |
+
# Encoder 1
|
| 163 |
+
nn.Conv2d(in_channels=in_channels, out_channels=self.ngf, kernel_size=3, stride=1, padding=1),
|
| 164 |
+
nn.BatchNorm2d(self.ngf),
|
| 165 |
+
nn.LeakyReLU(0.2, inplace=True),
|
| 166 |
+
|
| 167 |
+
# Encoder 2
|
| 168 |
+
nn.Conv2d(in_channels=self.ngf, out_channels=self.ngf * 2, kernel_size=3, stride=2, padding=1),# half
|
| 169 |
+
nn.BatchNorm2d(self.ngf * 2),
|
| 170 |
+
nn.LeakyReLU(0.2, inplace=True),
|
| 171 |
+
|
| 172 |
+
# Encoder 3
|
| 173 |
+
nn.Conv2d(in_channels=self.ngf * 2, out_channels=self.ngf * 4, kernel_size=3, stride=2, padding=1),# half
|
| 174 |
+
nn.BatchNorm2d(self.ngf * 4),
|
| 175 |
+
nn.LeakyReLU(0.2, inplace=True),
|
| 176 |
+
|
| 177 |
+
# Encoder 4
|
| 178 |
+
nn.Conv2d(in_channels=self.ngf * 4, out_channels=self.ngf * 5, kernel_size=3, stride=2, padding=1),# half
|
| 179 |
+
nn.BatchNorm2d(self.ngf * 5),
|
| 180 |
+
nn.LeakyReLU(0.2, inplace=True),
|
| 181 |
+
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
def forward(self, sample, timestep, sar_image=None,
|
| 185 |
+
encoder_hidden_states=None,
|
| 186 |
+
timestep_cond=None, cross_attention_kwargs=None,
|
| 187 |
+
added_cond_kwargs=None):
|
| 188 |
+
|
| 189 |
+
if encoder_hidden_states is None:
|
| 190 |
+
assert sar_image is not None
|
| 191 |
+
bz = sample.shape[0]
|
| 192 |
+
encoder_hidden_states = self.sar_encoder(sar_image).reshape(bz, -1, 1280)
|
| 193 |
+
|
| 194 |
+
default_overall_up_factor = 2 ** self.num_upsamplers
|
| 195 |
+
forward_upsample_size = False
|
| 196 |
+
upsample_size = None
|
| 197 |
+
|
| 198 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
| 199 |
+
forward_upsample_size = True
|
| 200 |
+
|
| 201 |
+
timesteps = timestep
|
| 202 |
+
if not torch.is_tensor(timesteps):
|
| 203 |
+
is_mps = sample.device.type == "mps"
|
| 204 |
+
if isinstance(timestep, float):
|
| 205 |
+
dtype = torch.float32 if is_mps else torch.float64
|
| 206 |
+
else:
|
| 207 |
+
dtype = torch.int32 if is_mps else torch.int64
|
| 208 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
| 209 |
+
elif len(timesteps.shape) == 0:
|
| 210 |
+
timesteps = timesteps[None].to(sample.device)
|
| 211 |
+
|
| 212 |
+
timesteps = timesteps.expand(sample.shape[0])
|
| 213 |
+
|
| 214 |
+
t_emb = self.time_proj(timesteps)
|
| 215 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
| 216 |
+
|
| 217 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
| 218 |
+
aug_emb = None
|
| 219 |
+
|
| 220 |
+
if added_cond_kwargs is not None:
|
| 221 |
+
if 'sar' in added_cond_kwargs:
|
| 222 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
| 223 |
+
aug_emb = self.add_embedding(image_embs)
|
| 224 |
+
else:
|
| 225 |
+
raise ValueError(
|
| 226 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
| 230 |
+
if self.time_embed_act is not None:
|
| 231 |
+
emb = self.time_embed_act(emb)
|
| 232 |
+
# 2. pre-process
|
| 233 |
+
sample = self.conv_in(sample)
|
| 234 |
+
|
| 235 |
+
# 3. down
|
| 236 |
+
down_block_res_samples = (sample,)
|
| 237 |
+
|
| 238 |
+
for downsample_block in self.down_blocks:
|
| 239 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
| 240 |
+
sample, res_samples = downsample_block(
|
| 241 |
+
hidden_states=sample,
|
| 242 |
+
temb=emb,
|
| 243 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 244 |
+
attention_mask=None,
|
| 245 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 246 |
+
encoder_attention_mask=None,
|
| 247 |
+
)
|
| 248 |
+
else:
|
| 249 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
| 250 |
+
|
| 251 |
+
down_block_res_samples += res_samples
|
| 252 |
+
|
| 253 |
+
# 4. mid
|
| 254 |
+
if self.mid_block is not None:
|
| 255 |
+
sample = self.mid_block(
|
| 256 |
+
sample,
|
| 257 |
+
emb,
|
| 258 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 259 |
+
attention_mask=None,
|
| 260 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 261 |
+
encoder_attention_mask=None,
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
# 5. up
|
| 265 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
| 266 |
+
is_final_block = i == len(self.up_blocks) - 1
|
| 267 |
+
|
| 268 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets):]
|
| 269 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
| 270 |
+
|
| 271 |
+
# if we have not reached the final block and need to forward the
|
| 272 |
+
# upsample size, we do it here
|
| 273 |
+
if not is_final_block and forward_upsample_size:
|
| 274 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
| 275 |
+
|
| 276 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
| 277 |
+
sample = upsample_block(
|
| 278 |
+
hidden_states=sample,
|
| 279 |
+
temb=emb,
|
| 280 |
+
res_hidden_states_tuple=res_samples,
|
| 281 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 282 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 283 |
+
upsample_size=upsample_size,
|
| 284 |
+
attention_mask=None,
|
| 285 |
+
encoder_attention_mask=None,
|
| 286 |
+
)
|
| 287 |
+
else:
|
| 288 |
+
sample = upsample_block(
|
| 289 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
# 6. post-process
|
| 293 |
+
if self.conv_norm_out:
|
| 294 |
+
sample = self.conv_norm_out(sample)
|
| 295 |
+
sample = self.conv_act(sample)
|
| 296 |
+
sample = self.conv_out(sample)
|
| 297 |
+
|
| 298 |
+
return sample
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
class SAR2OptUNetv3(UNet2DModel):
|
| 303 |
+
def __init__(self, *args, **kwargs):
|
| 304 |
+
super().__init__(*args,**kwargs)
|
| 305 |
+
|
| 306 |
+
def forward(self, sample, timestep):
|
| 307 |
+
if self.config.center_input_sample:
|
| 308 |
+
sample = 2 * sample - 1.0
|
| 309 |
+
# 1. time
|
| 310 |
+
timesteps = timestep
|
| 311 |
+
if not torch.is_tensor(timesteps):
|
| 312 |
+
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
|
| 313 |
+
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
|
| 314 |
+
timesteps = timesteps[None].to(sample.device)
|
| 315 |
+
|
| 316 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 317 |
+
timesteps = timesteps * torch.ones(sample.shape[0], dtype=timesteps.dtype, device=timesteps.device)
|
| 318 |
+
|
| 319 |
+
t_emb = self.time_proj(timesteps)
|
| 320 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
| 321 |
+
emb = self.time_embedding(t_emb)
|
| 322 |
+
|
| 323 |
+
# 2. pre-process
|
| 324 |
+
skip_sample = sample
|
| 325 |
+
sample = self.conv_in(sample)
|
| 326 |
+
|
| 327 |
+
# 3. down
|
| 328 |
+
down_block_res_samples = (sample,)
|
| 329 |
+
for downsample_block in self.down_blocks:
|
| 330 |
+
if hasattr(downsample_block, "skip_conv"):
|
| 331 |
+
sample, res_samples, skip_sample = downsample_block(
|
| 332 |
+
hidden_states=sample, temb=emb, skip_sample=skip_sample
|
| 333 |
+
)
|
| 334 |
+
else:
|
| 335 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
| 336 |
+
|
| 337 |
+
down_block_res_samples += res_samples
|
| 338 |
+
|
| 339 |
+
# 4. mid
|
| 340 |
+
sample = self.mid_block(sample, emb)
|
| 341 |
+
|
| 342 |
+
# 5. up
|
| 343 |
+
skip_sample = None
|
| 344 |
+
for upsample_block in self.up_blocks:
|
| 345 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
| 346 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
| 347 |
+
|
| 348 |
+
if hasattr(upsample_block, "skip_conv"):
|
| 349 |
+
sample, skip_sample = upsample_block(sample, res_samples, emb, skip_sample)
|
| 350 |
+
else:
|
| 351 |
+
sample = upsample_block(sample, res_samples, emb)
|
| 352 |
+
|
| 353 |
+
# 6. post-process
|
| 354 |
+
sample = self.conv_norm_out(sample)
|
| 355 |
+
sample = self.conv_act(sample)
|
| 356 |
+
sample = self.conv_out(sample)
|
| 357 |
+
|
| 358 |
+
if skip_sample is not None:
|
| 359 |
+
sample += skip_sample
|
| 360 |
+
|
| 361 |
+
if self.config.time_embedding_type == "fourier":
|
| 362 |
+
timesteps = timesteps.reshape((sample.shape[0], *([1] * len(sample.shape[1:]))))
|
| 363 |
+
sample = sample / timesteps
|
| 364 |
+
|
| 365 |
+
return sample
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
# 3*64*64
|
| 372 |
+
if __name__ == '__main__':
|
| 373 |
+
model = SAR2OptUNetv2(
|
| 374 |
+
sample_size=256,
|
| 375 |
+
in_channels=3,
|
| 376 |
+
out_channels=3,
|
| 377 |
+
layers_per_block=2,
|
| 378 |
+
block_out_channels=(128, 128, 256, 256, 512, 512),
|
| 379 |
+
down_block_types=(
|
| 380 |
+
"DownBlock2D",
|
| 381 |
+
"DownBlock2D",
|
| 382 |
+
"DownBlock2D",
|
| 383 |
+
"DownBlock2D",
|
| 384 |
+
"AttnDownBlock2D",
|
| 385 |
+
"DownBlock2D",
|
| 386 |
+
),
|
| 387 |
+
up_block_types=(
|
| 388 |
+
"UpBlock2D",
|
| 389 |
+
"AttnUpBlock2D",
|
| 390 |
+
"UpBlock2D",
|
| 391 |
+
"UpBlock2D",
|
| 392 |
+
"UpBlock2D",
|
| 393 |
+
"UpBlock2D",
|
| 394 |
+
),
|
| 395 |
+
)
|
| 396 |
+
model.to("cuda")
|
| 397 |
+
opt_image = torch.randn(8, 3, 256, 256).to("cuda")
|
| 398 |
+
sar_image = torch.randn(8, 1, 256, 256).to("cuda")
|
| 399 |
+
|
| 400 |
+
timestep = torch.tensor(1.0)
|
| 401 |
+
re = model(opt_image, timestep, sar_image , None, None, None)
|
| 402 |
+
print(re.shape)
|
models/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:34833bcdbebf7767daa0015ca6bc0a0c444c68d84fad6f7aa96a10f1653cf1d7
|
| 3 |
+
size 454745716
|
models/model_org.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:788ed3e1601923a5245e430b89ff3522c3ab8c46b928d8a1275778a27cf2f8cf
|
| 3 |
+
size 454745716
|
sar_1.png
ADDED
|
sar_2.png
ADDED
|
sar_3.png
ADDED
|
sar_4.png
ADDED
|
utils.py
ADDED
|
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import ast
|
| 2 |
+
from safetensors import safe_open
|
| 3 |
+
import torch
|
| 4 |
+
from dataclasses import dataclass
|
| 5 |
+
from typing import Optional, Union, List
|
| 6 |
+
|
| 7 |
+
def update_args_from_yaml(group, args, parser):
|
| 8 |
+
for key, value in group.items():
|
| 9 |
+
if isinstance(value, dict):
|
| 10 |
+
update_args_from_yaml(value, args, parser)
|
| 11 |
+
else:
|
| 12 |
+
if value == 'None' or value == 'null':
|
| 13 |
+
value = None
|
| 14 |
+
else:
|
| 15 |
+
arg_type = next((action.type for action in parser._actions if action.dest == key), str)
|
| 16 |
+
|
| 17 |
+
if arg_type is ast.literal_eval:
|
| 18 |
+
pass
|
| 19 |
+
elif arg_type is not None and not isinstance(value, arg_type):
|
| 20 |
+
try:
|
| 21 |
+
value = arg_type(value)
|
| 22 |
+
except ValueError as e:
|
| 23 |
+
raise ValueError(f"Cannot convert {key} to {arg_type}: {e}")
|
| 24 |
+
|
| 25 |
+
setattr(args, key, value)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def safe_load(model_path):
|
| 29 |
+
assert "safetensors" in model_path
|
| 30 |
+
state_dict = {}
|
| 31 |
+
with safe_open(model_path, framework="pt", device="cpu") as f:
|
| 32 |
+
for k in f.keys():
|
| 33 |
+
state_dict[k] = f.get_tensor(k)
|
| 34 |
+
return state_dict
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@dataclass
|
| 38 |
+
class DDIMSchedulerStepOutput:
|
| 39 |
+
prev_sample: torch.Tensor # x_{t-1}
|
| 40 |
+
pred_original_sample: Optional[torch.Tensor] = None # x0
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
@dataclass
|
| 44 |
+
class DDIMSchedulerConversionOutput:
|
| 45 |
+
pred_epsilon: torch.Tensor
|
| 46 |
+
pred_original_sample: torch.Tensor
|
| 47 |
+
pred_velocity: torch.Tensor
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class DDIMScheduler:
|
| 51 |
+
prediction_types = ["epsilon", "sample", "v_prediction"]
|
| 52 |
+
|
| 53 |
+
def __init__(
|
| 54 |
+
self,
|
| 55 |
+
num_train_timesteps: int,
|
| 56 |
+
num_inference_timesteps: int,
|
| 57 |
+
betas: torch.Tensor,
|
| 58 |
+
set_alpha_to_one: bool = True,
|
| 59 |
+
set_inference_timesteps_from_pure_noise: bool = True,
|
| 60 |
+
inference_timesteps: Union[str, List[int]] = "trailing",
|
| 61 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 62 |
+
dtype: torch.dtype = torch.float32,
|
| 63 |
+
skip_step:bool = False,
|
| 64 |
+
original_inference_step: int=20,
|
| 65 |
+
steps_offset: int=0,
|
| 66 |
+
|
| 67 |
+
):
|
| 68 |
+
assert num_train_timesteps > 0
|
| 69 |
+
assert num_train_timesteps >= num_inference_timesteps
|
| 70 |
+
assert num_train_timesteps == betas.size(0)
|
| 71 |
+
assert betas.ndim == 1
|
| 72 |
+
# self.user_name = user_name
|
| 73 |
+
# self.run_time = Recorder.format_time()
|
| 74 |
+
# self.task_name = 'AutoAIGC_%s' % str(self.run_time)
|
| 75 |
+
self.module_name = 'AutoAIGC'
|
| 76 |
+
self.config_list = {"num_train_timesteps": num_train_timesteps,
|
| 77 |
+
"num_inference_timesteps": num_inference_timesteps,
|
| 78 |
+
"betas": betas,
|
| 79 |
+
"set_alpha_to_one": set_alpha_to_one,
|
| 80 |
+
"set_inference_timesteps_from_pure_noise": set_inference_timesteps_from_pure_noise,
|
| 81 |
+
"inference_timesteps": inference_timesteps}
|
| 82 |
+
self.module_info = str(self.config_list)
|
| 83 |
+
|
| 84 |
+
# self.upload_logger(user_name=user_name)
|
| 85 |
+
|
| 86 |
+
device = device or betas.device
|
| 87 |
+
|
| 88 |
+
self.num_train_timesteps = num_train_timesteps
|
| 89 |
+
self.num_inference_steps = num_inference_timesteps
|
| 90 |
+
self.steps_offset = steps_offset
|
| 91 |
+
|
| 92 |
+
self.betas = betas # .to(device=device, dtype=dtype)
|
| 93 |
+
self.alphas = 1.0 - self.betas
|
| 94 |
+
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
| 95 |
+
self.final_alpha_cumprod = torch.tensor(1.0, device=device, dtype=dtype) if set_alpha_to_one else self.alphas_cumprod[0]
|
| 96 |
+
|
| 97 |
+
if isinstance(inference_timesteps, torch.Tensor):
|
| 98 |
+
assert len(inference_timesteps) == num_inference_timesteps
|
| 99 |
+
self.timesteps = inference_timesteps.cpu().numpy().tolist()
|
| 100 |
+
elif set_inference_timesteps_from_pure_noise:
|
| 101 |
+
if inference_timesteps == "trailing":
|
| 102 |
+
# [999, 949, 899, 849, 799, 749, 699, 649, 599, 549, 499, 449, 399, 349, 299, 249, 199, 149, 99, 49]
|
| 103 |
+
if skip_step: # ?
|
| 104 |
+
original_timesteps = torch.arange(num_train_timesteps - 1, -1, -num_train_timesteps / original_inference_step, device=device).round().int().tolist()
|
| 105 |
+
skipping_step = len(original_timesteps) // num_inference_timesteps
|
| 106 |
+
self.timesteps = original_timesteps[::skipping_step][:num_inference_timesteps]
|
| 107 |
+
else: # [999, 899, 799, 699, 599, 499, 399, 299, 199, 99]
|
| 108 |
+
self.timesteps = torch.arange(num_train_timesteps - 1, -1, -num_train_timesteps / num_inference_timesteps, device=device).round().int().tolist()
|
| 109 |
+
elif inference_timesteps == "linspace":
|
| 110 |
+
# Fixed DDIM timestep. Make sure the timestep starts from 999.
|
| 111 |
+
# Example 20 steps:
|
| 112 |
+
# [999, 946, 894, 841, 789, 736, 684, 631, 578, 526, 473, 421, 368, 315, 263, 210, 158, 105, 53, 0]
|
| 113 |
+
# [999, 888, 777, 666, 555, 444, 333, 222, 111, 0]
|
| 114 |
+
self.timesteps = torch.linspace(0, num_train_timesteps - 1, num_inference_timesteps, device=device).round().int().flip(0).tolist()
|
| 115 |
+
elif inference_timesteps == "leading":
|
| 116 |
+
step_ratio = num_train_timesteps // num_inference_timesteps
|
| 117 |
+
# # creates integer timesteps by multiplying by ratio
|
| 118 |
+
# # casting to int to avoid issues when num_inference_step is power of 3
|
| 119 |
+
self.timesteps = torch.arange(0, num_inference_timesteps).mul(step_ratio).round().flip(dims=[0]) #.clone().long()
|
| 120 |
+
# self.timesteps += self.steps_offset
|
| 121 |
+
|
| 122 |
+
# Original SD and DDIM paper may have a bug: <https://github.com/huggingface/diffusers/issues/2585>
|
| 123 |
+
# The inference timestep does not start from 999.
|
| 124 |
+
# Example 20 steps:
|
| 125 |
+
# [950, 900, 850, 800, 750, 700, 650, 600, 550, 500, 450, 400, 350, 300, 250, 200, 150, 100, 50, 0]
|
| 126 |
+
# [ 900, 800, 700, 600, 500, 400, 300, 200, 100, 0]
|
| 127 |
+
# self.timesteps = torch.arange(0, num_train_timesteps, num_train_timesteps // num_inference_timesteps, device=self.device, dtype=torch.int).flip(0)
|
| 128 |
+
# self.timesteps = list(reversed(range(0, num_train_timesteps, num_train_timesteps // num_inference_timesteps)))
|
| 129 |
+
else:
|
| 130 |
+
raise NotImplementedError
|
| 131 |
+
|
| 132 |
+
elif inference_timesteps == "leading":
|
| 133 |
+
# Original SD and DDIM paper may have a bug: <https://github.com/huggingface/diffusers/issues/2585>
|
| 134 |
+
# The inference timestep does not start from 999.
|
| 135 |
+
# Example 20 steps:
|
| 136 |
+
# [950, 900, 850, 800, 750, 700, 650, 600, 550, 500, 450, 400, 350, 300, 250, 200, 150, 100, 50, 0]
|
| 137 |
+
# [ 900, 800, 700, 600, 500, 400, 300, 200, 100, 0]
|
| 138 |
+
# self.timesteps = torch.arange(0, num_train_timesteps, num_train_timesteps // num_inference_timesteps, device=self.device, dtype=torch.int).flip(0)
|
| 139 |
+
self.timesteps = list(reversed(range(0, num_train_timesteps, num_train_timesteps // num_inference_timesteps)))
|
| 140 |
+
|
| 141 |
+
else:
|
| 142 |
+
self.timesteps = list(reversed(range(0, num_train_timesteps, num_train_timesteps // num_inference_timesteps)))
|
| 143 |
+
# raise NotImplementedError
|
| 144 |
+
|
| 145 |
+
self.to(device=device)
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def to(self, device):
|
| 149 |
+
self.betas = self.betas.to(device)
|
| 150 |
+
self.alphas_cumprod = self.alphas_cumprod.to(device)
|
| 151 |
+
self.final_alpha_cumprod = self.final_alpha_cumprod.to(device)
|
| 152 |
+
# self.timesteps = self.timesteps.to(device)
|
| 153 |
+
return self
|
| 154 |
+
|
| 155 |
+
def step(
|
| 156 |
+
self,
|
| 157 |
+
model_output: torch.Tensor,
|
| 158 |
+
model_output_type: str,
|
| 159 |
+
timestep: Union[torch.Tensor, int],
|
| 160 |
+
sample: torch.Tensor,
|
| 161 |
+
eta: float = 0.0,
|
| 162 |
+
clip_sample: bool = False,
|
| 163 |
+
dynamic_threshold: Optional[float] = None,
|
| 164 |
+
variance_noise: Optional[torch.Tensor] = None,
|
| 165 |
+
) -> DDIMSchedulerStepOutput:
|
| 166 |
+
# 1. get previous step value (t-1)
|
| 167 |
+
if isinstance(timestep, int):
|
| 168 |
+
# 1. get previous step value (t-1)
|
| 169 |
+
idx = self.timesteps.index(timestep)
|
| 170 |
+
prev_timestep = self.timesteps[idx + 1] if idx < self.num_inference_steps - 1 else None
|
| 171 |
+
|
| 172 |
+
# 2. compute alphas, betas
|
| 173 |
+
alpha_prod_t = self.alphas_cumprod[timestep]
|
| 174 |
+
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep is not None else self.final_alpha_cumprod
|
| 175 |
+
beta_prod_t = 1 - alpha_prod_t
|
| 176 |
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
| 177 |
+
else:
|
| 178 |
+
timesteps = torch.tensor(self.timesteps).to(timestep.device)
|
| 179 |
+
idx = timestep.reshape(-1, 1).eq(timesteps.reshape(1, -1)).nonzero()[:, 1] # 找到 timestep 在 timesteps 中的索引 idx
|
| 180 |
+
# 根据idx找到idx+1对应的timesteps元素,也就是下一个时间步。如果idx+1超出了timesteps的长度,它会被限制在self.num_inference_steps - 1
|
| 181 |
+
prev_timestep = timesteps[idx.add(1).clamp_max(self.num_inference_steps - 1)]
|
| 182 |
+
|
| 183 |
+
assert (prev_timestep is not None)
|
| 184 |
+
# 2. compute alphas, betas
|
| 185 |
+
alpha_prod_t = self.alphas_cumprod[timestep]
|
| 186 |
+
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep]
|
| 187 |
+
alpha_prod_t_prev = torch.where(prev_timestep < 0, self.final_alpha_cumprod, alpha_prod_t_prev)
|
| 188 |
+
beta_prod_t = 1 - alpha_prod_t
|
| 189 |
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
| 190 |
+
|
| 191 |
+
bs = timestep.size(0)
|
| 192 |
+
alpha_prod_t = alpha_prod_t.view(bs, 1, 1, 1)
|
| 193 |
+
alpha_prod_t_prev = alpha_prod_t_prev.view(bs, 1, 1, 1)
|
| 194 |
+
beta_prod_t = beta_prod_t.view(bs, 1, 1, 1)
|
| 195 |
+
beta_prod_t_prev = beta_prod_t_prev.view(bs, 1, 1, 1)
|
| 196 |
+
|
| 197 |
+
# # 2. compute alphas, betas
|
| 198 |
+
# alpha_prod_t = self.alphas_cumprod[timestep]
|
| 199 |
+
# alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep is not None else self.final_alpha_cumprod
|
| 200 |
+
# beta_prod_t = 1 - alpha_prod_t
|
| 201 |
+
# beta_prod_t_prev = 1 - alpha_prod_t_prev
|
| 202 |
+
# rcfg
|
| 203 |
+
self.stock_alpha_prod_t_prev = alpha_prod_t_prev
|
| 204 |
+
self.stock_beta_prod_t_prev = beta_prod_t_prev
|
| 205 |
+
|
| 206 |
+
# rcfg
|
| 207 |
+
self.stock_alpha_prod_t_prev = alpha_prod_t_prev
|
| 208 |
+
self.stock_beta_prod_t_prev = beta_prod_t_prev
|
| 209 |
+
|
| 210 |
+
# 3. compute predicted original sample from predicted noise also called
|
| 211 |
+
model_output_conversion = self.convert_output(model_output, model_output_type, sample, timestep)
|
| 212 |
+
pred_original_sample = model_output_conversion.pred_original_sample
|
| 213 |
+
pred_epsilon = model_output_conversion.pred_epsilon
|
| 214 |
+
|
| 215 |
+
# 4. Clip or threshold "predicted x_0"
|
| 216 |
+
if clip_sample:
|
| 217 |
+
pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
|
| 218 |
+
pred_epsilon = self.convert_output(pred_original_sample, "sample", sample, timestep).pred_epsilon
|
| 219 |
+
|
| 220 |
+
if dynamic_threshold is not None:
|
| 221 |
+
# Dynamic thresholding in https://arxiv.org/abs/2205.11487
|
| 222 |
+
dynamic_max_val = pred_original_sample \
|
| 223 |
+
.flatten(1) \
|
| 224 |
+
.abs() \
|
| 225 |
+
.float() \
|
| 226 |
+
.quantile(dynamic_threshold, dim=1) \
|
| 227 |
+
.type_as(pred_original_sample) \
|
| 228 |
+
.clamp_min(1) \
|
| 229 |
+
.view(-1, *([1] * (pred_original_sample.ndim - 1)))
|
| 230 |
+
pred_original_sample = pred_original_sample.clamp(-dynamic_max_val, dynamic_max_val) / dynamic_max_val
|
| 231 |
+
pred_epsilon = self.convert_output(pred_original_sample, "sample", sample, timestep).pred_epsilon
|
| 232 |
+
|
| 233 |
+
# 5. compute variance: "sigma_t(η)" -> see formula (16) from https://arxiv.org/pdf/2010.02502.pdf
|
| 234 |
+
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
|
| 235 |
+
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
|
| 236 |
+
std_dev_t = eta * variance ** (0.5)
|
| 237 |
+
|
| 238 |
+
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
| 239 |
+
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon
|
| 240 |
+
|
| 241 |
+
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
| 242 |
+
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
|
| 243 |
+
|
| 244 |
+
# 8. add "random noise" if needed.
|
| 245 |
+
if eta > 0:
|
| 246 |
+
if variance_noise is None:
|
| 247 |
+
variance_noise = torch.randn_like(model_output)
|
| 248 |
+
prev_sample = prev_sample + std_dev_t * variance_noise
|
| 249 |
+
|
| 250 |
+
return DDIMSchedulerStepOutput(
|
| 251 |
+
prev_sample=prev_sample, # x_{t-1}
|
| 252 |
+
pred_original_sample=pred_original_sample # x0
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
def add_noise(
|
| 256 |
+
self,
|
| 257 |
+
original_samples: torch.Tensor,
|
| 258 |
+
noise: torch.Tensor,
|
| 259 |
+
timesteps: Union[torch.Tensor, int],
|
| 260 |
+
replace_noise=True
|
| 261 |
+
) -> torch.Tensor:
|
| 262 |
+
alpha_prod_t = self.alphas_cumprod[timesteps].reshape(-1, *([1] * (original_samples.ndim - 1)))
|
| 263 |
+
if replace_noise:
|
| 264 |
+
indices = (timesteps == 999).nonzero()
|
| 265 |
+
if indices.numel() > 0:
|
| 266 |
+
alpha_prod_t[indices] = 0
|
| 267 |
+
return alpha_prod_t ** (0.5) * original_samples + (1 - alpha_prod_t) ** (0.5) * noise
|
| 268 |
+
|
| 269 |
+
def add_noise_lcm(
|
| 270 |
+
self,
|
| 271 |
+
original_samples: torch.Tensor,
|
| 272 |
+
noise: torch.Tensor,
|
| 273 |
+
timestep: Union[torch.Tensor, int],
|
| 274 |
+
) -> torch.Tensor:
|
| 275 |
+
if isinstance(timestep, int):
|
| 276 |
+
# 1. get previous step value (t-1)
|
| 277 |
+
idx = self.timesteps.index(timestep)
|
| 278 |
+
prev_timestep = self.timesteps[idx + 1] if idx < self.num_inference_steps - 1 else None
|
| 279 |
+
|
| 280 |
+
# 2. compute alphas, betas
|
| 281 |
+
alpha_prod_t = self.alphas_cumprod[timestep]
|
| 282 |
+
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep is not None else self.final_alpha_cumprod
|
| 283 |
+
beta_prod_t = 1 - alpha_prod_t
|
| 284 |
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
| 285 |
+
else:
|
| 286 |
+
timesteps = torch.tensor(self.timesteps).to(timestep.device)
|
| 287 |
+
idx = timestep.reshape(-1, 1).eq(timesteps.reshape(1, -1)).nonzero()[:, 1] # 找到 timestep 在 timesteps 中的索引 idx
|
| 288 |
+
prev_timestep = timesteps[idx.add(1).clamp_max(self.num_inference_steps - 1)]
|
| 289 |
+
|
| 290 |
+
assert (prev_timestep is not None)
|
| 291 |
+
# 2. compute alphas, betas
|
| 292 |
+
alpha_prod_t = self.alphas_cumprod[timestep]
|
| 293 |
+
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep]
|
| 294 |
+
alpha_prod_t_prev = torch.where(prev_timestep < 0, self.final_alpha_cumprod, alpha_prod_t_prev)
|
| 295 |
+
beta_prod_t = 1 - alpha_prod_t
|
| 296 |
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
| 297 |
+
|
| 298 |
+
bs = timestep.size(0)
|
| 299 |
+
alpha_prod_t = alpha_prod_t.view(bs, 1, 1, 1)
|
| 300 |
+
alpha_prod_t_prev = alpha_prod_t_prev.view(bs, 1, 1, 1)
|
| 301 |
+
beta_prod_t = beta_prod_t.view(bs, 1, 1, 1)
|
| 302 |
+
beta_prod_t_prev = beta_prod_t_prev.view(bs, 1, 1, 1)
|
| 303 |
+
|
| 304 |
+
alpha_prod_t_prev = alpha_prod_t_prev.reshape(-1, *([1] * (original_samples.ndim - 1)))
|
| 305 |
+
return alpha_prod_t_prev ** (0.5) * original_samples + (1 - alpha_prod_t_prev) ** (0.5) * noise
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
def convert_output(
|
| 309 |
+
self,
|
| 310 |
+
model_output: torch.Tensor,
|
| 311 |
+
model_output_type: str,
|
| 312 |
+
sample: torch.Tensor,
|
| 313 |
+
timesteps: Union[torch.Tensor, int]
|
| 314 |
+
) -> DDIMSchedulerConversionOutput:
|
| 315 |
+
assert model_output_type in self.prediction_types
|
| 316 |
+
|
| 317 |
+
alpha_prod_t = self.alphas_cumprod[timesteps].reshape(-1, *([1] * (sample.ndim - 1)))
|
| 318 |
+
beta_prod_t = 1 - alpha_prod_t
|
| 319 |
+
|
| 320 |
+
if model_output_type == "epsilon":
|
| 321 |
+
pred_epsilon = model_output
|
| 322 |
+
pred_original_sample = (sample - beta_prod_t ** (0.5) * pred_epsilon) / alpha_prod_t ** (0.5)
|
| 323 |
+
pred_velocity = alpha_prod_t ** (0.5) * pred_epsilon - (1 - alpha_prod_t) ** (0.5) * pred_original_sample
|
| 324 |
+
elif model_output_type == "sample":
|
| 325 |
+
pred_original_sample = model_output
|
| 326 |
+
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
|
| 327 |
+
pred_velocity = alpha_prod_t ** (0.5) * pred_epsilon - (1 - alpha_prod_t) ** (0.5) * pred_original_sample
|
| 328 |
+
elif model_output_type == "v_prediction":
|
| 329 |
+
pred_velocity = model_output
|
| 330 |
+
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
|
| 331 |
+
pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
|
| 332 |
+
else:
|
| 333 |
+
raise ValueError("Unknown prediction type")
|
| 334 |
+
|
| 335 |
+
return DDIMSchedulerConversionOutput(
|
| 336 |
+
pred_epsilon=pred_epsilon,
|
| 337 |
+
pred_original_sample=pred_original_sample,
|
| 338 |
+
pred_velocity=pred_velocity)
|
| 339 |
+
|
| 340 |
+
def get_velocity(
|
| 341 |
+
self,
|
| 342 |
+
sample: torch.Tensor,
|
| 343 |
+
noise: torch.Tensor,
|
| 344 |
+
timesteps: torch.Tensor
|
| 345 |
+
) -> torch.FloatTensor:
|
| 346 |
+
alpha_prod_t = self.alphas_cumprod[timesteps].reshape(-1, *([1] * (sample.ndim - 1)))
|
| 347 |
+
return alpha_prod_t ** (0.5) * noise - (1 - alpha_prod_t) ** (0.5) * sample
|