Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- app.py +19 -70
- config.json +8 -0
- inference.py +46 -0
- model.py +91 -0
app.py
CHANGED
|
@@ -1,70 +1,19 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
messages.extend(history)
|
| 22 |
-
|
| 23 |
-
messages.append({"role": "user", "content": message})
|
| 24 |
-
|
| 25 |
-
response = ""
|
| 26 |
-
|
| 27 |
-
for message in client.chat_completion(
|
| 28 |
-
messages,
|
| 29 |
-
max_tokens=max_tokens,
|
| 30 |
-
stream=True,
|
| 31 |
-
temperature=temperature,
|
| 32 |
-
top_p=top_p,
|
| 33 |
-
):
|
| 34 |
-
choices = message.choices
|
| 35 |
-
token = ""
|
| 36 |
-
if len(choices) and choices[0].delta.content:
|
| 37 |
-
token = choices[0].delta.content
|
| 38 |
-
|
| 39 |
-
response += token
|
| 40 |
-
yield response
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
"""
|
| 44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
-
"""
|
| 46 |
-
chatbot = gr.ChatInterface(
|
| 47 |
-
respond,
|
| 48 |
-
type="messages",
|
| 49 |
-
additional_inputs=[
|
| 50 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 51 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 52 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 53 |
-
gr.Slider(
|
| 54 |
-
minimum=0.1,
|
| 55 |
-
maximum=1.0,
|
| 56 |
-
value=0.95,
|
| 57 |
-
step=0.05,
|
| 58 |
-
label="Top-p (nucleus sampling)",
|
| 59 |
-
),
|
| 60 |
-
],
|
| 61 |
-
)
|
| 62 |
-
|
| 63 |
-
with gr.Blocks() as demo:
|
| 64 |
-
with gr.Sidebar():
|
| 65 |
-
gr.LoginButton()
|
| 66 |
-
chatbot.render()
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
if __name__ == "__main__":
|
| 70 |
-
demo.launch()
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from inference import load_for_inference, predict
|
| 3 |
+
|
| 4 |
+
REPO_ID = "MUERIS/TurkishVLMTAMGA"
|
| 5 |
+
|
| 6 |
+
model, tokenizer, device = load_for_inference(REPO_ID)
|
| 7 |
+
|
| 8 |
+
def answer(image, question):
|
| 9 |
+
return predict(model, tokenizer, device, image, question)
|
| 10 |
+
|
| 11 |
+
gr.Interface(
|
| 12 |
+
fn=answer,
|
| 13 |
+
inputs=[
|
| 14 |
+
gr.Image(type="pil"),
|
| 15 |
+
gr.Textbox(label="Question")
|
| 16 |
+
],
|
| 17 |
+
outputs="text",
|
| 18 |
+
title="CLIP2MT5 Visual Question Answering"
|
| 19 |
+
).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "clip2mt5-crossattention",
|
| 3 |
+
"library": "pytorch",
|
| 4 |
+
"architectures": ["CLIP2MT5_CrossAttention"],
|
| 5 |
+
"pipeline_tag": "image-text-to-text",
|
| 6 |
+
"description": "CLIP + mT5 VQA Model using cross-attention.",
|
| 7 |
+
"author": "MUERIS"
|
| 8 |
+
}
|
inference.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from torchvision import transforms
|
| 4 |
+
|
| 5 |
+
from model import load_model
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# Preprocessing
|
| 9 |
+
_transform = transforms.Compose([
|
| 10 |
+
transforms.Resize((224, 224)),
|
| 11 |
+
transforms.ToTensor(),
|
| 12 |
+
transforms.Normalize(
|
| 13 |
+
mean=[0.4815, 0.4578, 0.4082],
|
| 14 |
+
std=[0.2686, 0.2613, 0.2758]
|
| 15 |
+
)
|
| 16 |
+
])
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def load_for_inference(repo_id, filename="model.pt"):
|
| 20 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 21 |
+
model = load_model(repo_id=repo_id, filename=filename, device=device)
|
| 22 |
+
tokenizer = model.tokenizer
|
| 23 |
+
return model, tokenizer, device
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def predict(model, tokenizer, device, image: Image.Image, question: str):
|
| 27 |
+
image_tensor = _transform(image).unsqueeze(0).to(device)
|
| 28 |
+
|
| 29 |
+
q = tokenizer(
|
| 30 |
+
question,
|
| 31 |
+
return_tensors='pt',
|
| 32 |
+
padding=True,
|
| 33 |
+
truncation=True,
|
| 34 |
+
max_length=64
|
| 35 |
+
).to(device)
|
| 36 |
+
|
| 37 |
+
with torch.no_grad():
|
| 38 |
+
output_ids = model.generate(
|
| 39 |
+
images=image_tensor,
|
| 40 |
+
input_ids=q.input_ids,
|
| 41 |
+
attention_mask=q.attention_mask,
|
| 42 |
+
max_length=64,
|
| 43 |
+
num_beams=4
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
model.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from transformers import CLIPModel, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class CLIP2MT5_CrossAttention(nn.Module):
|
| 8 |
+
def __init__(self, clip_name='openai/clip-vit-base-patch32',
|
| 9 |
+
t5_name='mukayese/mt5-base-turkish-summarization'):
|
| 10 |
+
super().__init__()
|
| 11 |
+
|
| 12 |
+
self.clip = CLIPModel.from_pretrained(clip_name)
|
| 13 |
+
self.tokenizer = AutoTokenizer.from_pretrained(t5_name)
|
| 14 |
+
self.t5 = AutoModelForSeq2SeqLM.from_pretrained(t5_name)
|
| 15 |
+
|
| 16 |
+
self.vis_proj = nn.Linear(
|
| 17 |
+
self.clip.config.vision_config.hidden_size,
|
| 18 |
+
self.t5.config.d_model
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
def forward(self, images, input_ids, attention_mask, labels=None):
|
| 22 |
+
vision_outputs = self.clip.vision_model(pixel_values=images).last_hidden_state
|
| 23 |
+
vision_embeds = self.vis_proj(vision_outputs)
|
| 24 |
+
|
| 25 |
+
text_embeds = self.t5.encoder.embed_tokens(input_ids)
|
| 26 |
+
|
| 27 |
+
extended_input_embeds = torch.cat([vision_embeds, text_embeds], dim=1)
|
| 28 |
+
|
| 29 |
+
extended_attention_mask = torch.cat([
|
| 30 |
+
torch.ones(vision_embeds.size(0), vision_embeds.size(1),
|
| 31 |
+
dtype=attention_mask.dtype, device=attention_mask.device),
|
| 32 |
+
attention_mask
|
| 33 |
+
], dim=1)
|
| 34 |
+
|
| 35 |
+
if labels is not None:
|
| 36 |
+
labels = labels.clone()
|
| 37 |
+
labels[labels == self.tokenizer.pad_token_id] = -100
|
| 38 |
+
|
| 39 |
+
return self.t5(
|
| 40 |
+
inputs_embeds=extended_input_embeds,
|
| 41 |
+
attention_mask=extended_attention_mask,
|
| 42 |
+
labels=labels,
|
| 43 |
+
return_dict=True
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
@torch.no_grad()
|
| 47 |
+
def generate(self, images, input_ids, attention_mask, **gen_kwargs):
|
| 48 |
+
vision_outputs = self.clip.vision_model(pixel_values=images).last_hidden_state
|
| 49 |
+
vision_embeds = self.vis_proj(vision_outputs)
|
| 50 |
+
|
| 51 |
+
text_embeds = self.t5.encoder.embed_tokens(input_ids)
|
| 52 |
+
|
| 53 |
+
extended_input_embeds = torch.cat([vision_embeds, text_embeds], dim=1)
|
| 54 |
+
|
| 55 |
+
extended_attention_mask = torch.cat([
|
| 56 |
+
torch.ones(vision_embeds.size(0), vision_embeds.size(1),
|
| 57 |
+
dtype=attention_mask.dtype, device=attention_mask.device),
|
| 58 |
+
attention_mask
|
| 59 |
+
], dim=1)
|
| 60 |
+
|
| 61 |
+
return self.t5.generate(
|
| 62 |
+
inputs_embeds=extended_input_embeds,
|
| 63 |
+
attention_mask=extended_attention_mask,
|
| 64 |
+
**gen_kwargs
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
# HF Loader for STATE_DICT
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def load_model(
|
| 73 |
+
repo_id: str,
|
| 74 |
+
filename: str = "model.pt",
|
| 75 |
+
clip_name="openai/clip-vit-base-patch32",
|
| 76 |
+
t5_name="mukayese/mt5-base-turkish-summarization",
|
| 77 |
+
device=None
|
| 78 |
+
):
|
| 79 |
+
if device is None:
|
| 80 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 81 |
+
|
| 82 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
| 83 |
+
|
| 84 |
+
model = CLIP2MT5_CrossAttention(clip_name=clip_name, t5_name=t5_name)
|
| 85 |
+
|
| 86 |
+
state = torch.load(model_path, map_location=device)
|
| 87 |
+
model.load_state_dict(state)
|
| 88 |
+
|
| 89 |
+
model.to(device)
|
| 90 |
+
model.eval()
|
| 91 |
+
return model
|