Spaces:
Running
on
Zero
Running
on
Zero
init
Browse files
app.py
CHANGED
|
@@ -8,13 +8,13 @@ import torch
|
|
| 8 |
from diffusers.pipelines.controlnet import StableDiffusionControlNetInpaintPipeline
|
| 9 |
from diffusers import ControlNetModel, UniPCMultistepScheduler, AutoPipelineForText2Image
|
| 10 |
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation, AutoModelForDepthEstimation
|
| 11 |
-
from
|
| 12 |
-
from
|
| 13 |
from diffusers import StableDiffusionXLPipeline
|
| 14 |
import gradio as gr
|
| 15 |
|
| 16 |
-
device = "cuda"
|
| 17 |
-
dtype = torch.float16
|
| 18 |
|
| 19 |
|
| 20 |
css = """
|
|
@@ -110,9 +110,9 @@ def segment_image(
|
|
| 110 |
|
| 111 |
def get_depth_pipeline():
|
| 112 |
feature_extractor = AutoImageProcessor.from_pretrained("models/models--LiheYoung--depth-anything-large-hf",
|
| 113 |
-
torch_dtype=
|
| 114 |
depth_estimator = AutoModelForDepthEstimation.from_pretrained("models/models--LiheYoung--depth-anything-large-hf",
|
| 115 |
-
torch_dtype=
|
| 116 |
return feature_extractor, depth_estimator
|
| 117 |
|
| 118 |
|
|
@@ -174,16 +174,16 @@ class ControlNetDepthDesignModelMulti:
|
|
| 174 |
|
| 175 |
#os.environ['HF_HUB_OFFLINE'] = "True"
|
| 176 |
controlnet_depth= ControlNetModel.from_pretrained(
|
| 177 |
-
"models/controlnet_depth", torch_dtype=
|
| 178 |
controlnet_seg = ControlNetModel.from_pretrained(
|
| 179 |
-
"models/own_controlnet", torch_dtype=
|
| 180 |
|
| 181 |
self.pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
| 182 |
"SG161222/Realistic_Vision_V5.1_noVAE",
|
| 183 |
#"models/runwayml--stable-diffusion-inpainting",
|
| 184 |
controlnet=[controlnet_depth, controlnet_seg],
|
| 185 |
safety_checker=None,
|
| 186 |
-
torch_dtype=
|
| 187 |
)
|
| 188 |
|
| 189 |
self.pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models",
|
|
@@ -278,7 +278,7 @@ class ControlNetDepthDesignModelMulti:
|
|
| 278 |
return design_image
|
| 279 |
|
| 280 |
|
| 281 |
-
def create_refseg_demo(model
|
| 282 |
gr.Markdown("### Stable Design demo")
|
| 283 |
with gr.Row():
|
| 284 |
with gr.Column():
|
|
@@ -334,7 +334,6 @@ def create_refseg_demo(model, device):
|
|
| 334 |
|
| 335 |
|
| 336 |
def main():
|
| 337 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 338 |
model = ControlNetDepthDesignModelMulti()
|
| 339 |
print('Models uploaded successfully')
|
| 340 |
|
|
@@ -347,7 +346,7 @@ def main():
|
|
| 347 |
gr.Markdown(title)
|
| 348 |
gr.Markdown(description)
|
| 349 |
|
| 350 |
-
create_refseg_demo(model
|
| 351 |
gr.HTML('''<br><br><br><center>You can duplicate this Space to skip the queue:<a href="https://huggingface.co/spaces/MykolaL/StableDesign?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a><br>
|
| 352 |
<p><img src="https://visitor-badge.glitch.me/badge?page_id=MykolaL/StableDesign" alt="visitors"></p></center>''')
|
| 353 |
|
|
|
|
| 8 |
from diffusers.pipelines.controlnet import StableDiffusionControlNetInpaintPipeline
|
| 9 |
from diffusers import ControlNetModel, UniPCMultistepScheduler, AutoPipelineForText2Image
|
| 10 |
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation, AutoModelForDepthEstimation
|
| 11 |
+
from colors import ade_palette
|
| 12 |
+
from utils import map_colors_rgb
|
| 13 |
from diffusers import StableDiffusionXLPipeline
|
| 14 |
import gradio as gr
|
| 15 |
|
| 16 |
+
device = "cpu"#"cuda"
|
| 17 |
+
dtype = torch.float32#torch.float16
|
| 18 |
|
| 19 |
|
| 20 |
css = """
|
|
|
|
| 110 |
|
| 111 |
def get_depth_pipeline():
|
| 112 |
feature_extractor = AutoImageProcessor.from_pretrained("models/models--LiheYoung--depth-anything-large-hf",
|
| 113 |
+
torch_dtype=dtype)
|
| 114 |
depth_estimator = AutoModelForDepthEstimation.from_pretrained("models/models--LiheYoung--depth-anything-large-hf",
|
| 115 |
+
torch_dtype=dtype)
|
| 116 |
return feature_extractor, depth_estimator
|
| 117 |
|
| 118 |
|
|
|
|
| 174 |
|
| 175 |
#os.environ['HF_HUB_OFFLINE'] = "True"
|
| 176 |
controlnet_depth= ControlNetModel.from_pretrained(
|
| 177 |
+
"models/controlnet_depth", torch_dtype=dtype, use_safetensors=True)
|
| 178 |
controlnet_seg = ControlNetModel.from_pretrained(
|
| 179 |
+
"models/own_controlnet", torch_dtype=dtype, use_safetensors=True)
|
| 180 |
|
| 181 |
self.pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
| 182 |
"SG161222/Realistic_Vision_V5.1_noVAE",
|
| 183 |
#"models/runwayml--stable-diffusion-inpainting",
|
| 184 |
controlnet=[controlnet_depth, controlnet_seg],
|
| 185 |
safety_checker=None,
|
| 186 |
+
torch_dtype=dtype
|
| 187 |
)
|
| 188 |
|
| 189 |
self.pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models",
|
|
|
|
| 278 |
return design_image
|
| 279 |
|
| 280 |
|
| 281 |
+
def create_refseg_demo(model):
|
| 282 |
gr.Markdown("### Stable Design demo")
|
| 283 |
with gr.Row():
|
| 284 |
with gr.Column():
|
|
|
|
| 334 |
|
| 335 |
|
| 336 |
def main():
|
|
|
|
| 337 |
model = ControlNetDepthDesignModelMulti()
|
| 338 |
print('Models uploaded successfully')
|
| 339 |
|
|
|
|
| 346 |
gr.Markdown(title)
|
| 347 |
gr.Markdown(description)
|
| 348 |
|
| 349 |
+
create_refseg_demo(model)
|
| 350 |
gr.HTML('''<br><br><br><center>You can duplicate this Space to skip the queue:<a href="https://huggingface.co/spaces/MykolaL/StableDesign?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a><br>
|
| 351 |
<p><img src="https://visitor-badge.glitch.me/badge?page_id=MykolaL/StableDesign" alt="visitors"></p></center>''')
|
| 352 |
|
colors.py
ADDED
|
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Color mappings"""
|
| 2 |
+
from typing import List
|
| 3 |
+
|
| 4 |
+
TRIVIA = {
|
| 5 |
+
"#B47878": "building;edifice",
|
| 6 |
+
"#06E6E6": "sky",
|
| 7 |
+
"#04C803": "tree",
|
| 8 |
+
"#8C8C8C": "road;route",
|
| 9 |
+
"#04FA07": "grass",
|
| 10 |
+
"#96053D": "person;individual;someone;somebody;mortal;soul",
|
| 11 |
+
"#CCFF04": "plant;flora;plant;life",
|
| 12 |
+
"#787846": "earth;ground",
|
| 13 |
+
"#FF09E0": "house",
|
| 14 |
+
"#0066C8": "car;auto;automobile;machine;motorcar",
|
| 15 |
+
"#3DE6FA": "water",
|
| 16 |
+
"#FF3D06": "railing;rail",
|
| 17 |
+
"#FF5C00": "arcade;machine",
|
| 18 |
+
"#FFE000": "stairs;steps",
|
| 19 |
+
"#00F5FF": "fan",
|
| 20 |
+
"#FF008F": "step;stair",
|
| 21 |
+
"#1F00FF": "stairway;staircase",
|
| 22 |
+
"#FFD600": "radiator",
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
OBJECTS = {
|
| 26 |
+
"#CC05FF": "bed",
|
| 27 |
+
"#FF0633": "painting;picture",
|
| 28 |
+
"#DCDCDC": "mirror",
|
| 29 |
+
"#00FF14": "box",
|
| 30 |
+
"#FF0000": "flower",
|
| 31 |
+
"#FFA300": "book",
|
| 32 |
+
"#00FFC2": "television;television;receiver;television;set;tv;tv;set;idiot;box;boob;tube;telly;goggle;box",
|
| 33 |
+
"#F500FF": "pot;flowerpot",
|
| 34 |
+
"#00FFCC": "vase",
|
| 35 |
+
"#29FF00": "tray",
|
| 36 |
+
"#8FFF00": "poster;posting;placard;notice;bill;card",
|
| 37 |
+
"#5CFF00": "basket;handbasket",
|
| 38 |
+
"#00ADFF": "screen;door;screen",
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
SITTING = {
|
| 43 |
+
"#0B66FF": "sofa;couch;lounge",
|
| 44 |
+
"#CC4603": "chair",
|
| 45 |
+
"#07FFE0": "seat",
|
| 46 |
+
"#08FFD6": "armchair",
|
| 47 |
+
"#FFC207": "cushion",
|
| 48 |
+
"#00EBFF": "pillow",
|
| 49 |
+
"#00D6FF": "stool",
|
| 50 |
+
"#1400FF": "blanket;cover",
|
| 51 |
+
"#0A00FF": "swivel;chair",
|
| 52 |
+
"#FF9900": "ottoman;pouf;pouffe;puff;hassock",
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
LIGHTING = {
|
| 56 |
+
"#E0FF08": "lamp",
|
| 57 |
+
"#FFAD00": "light;light;source",
|
| 58 |
+
"#001FFF": "chandelier;pendant;pendent",
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
TABLES = {
|
| 62 |
+
"#FF0652": "table",
|
| 63 |
+
"#0AFF47": "desk",
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
CLOSETS = {
|
| 67 |
+
"#E005FF": "cabinet",
|
| 68 |
+
"#FF0747": "shelf",
|
| 69 |
+
"#07FFFF": "wardrobe;closet;press",
|
| 70 |
+
"#0633FF": "chest;of;drawers;chest;bureau;dresser",
|
| 71 |
+
"#0000FF": "case;display;case;showcase;vitrine",
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
BATHROOM = {
|
| 76 |
+
"#6608FF": "bathtub;bathing;tub;bath;tub",
|
| 77 |
+
"#00FF85": "toilet;can;commode;crapper;pot;potty;stool;throne",
|
| 78 |
+
"#0085FF": "shower",
|
| 79 |
+
"#FF0066": "towel",
|
| 80 |
+
}
|
| 81 |
+
|
| 82 |
+
WINDOWS = {
|
| 83 |
+
"#FF3307": "curtain;drape;drapery;mantle;pall",
|
| 84 |
+
"#E6E6E6": "windowpane;window",
|
| 85 |
+
"#00FF3D": "awning;sunshade;sunblind",
|
| 86 |
+
"#003DFF": "blind;screen",
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
FLOOR = {
|
| 90 |
+
"#FF095C": "rug;carpet;carpeting",
|
| 91 |
+
"#503232": "floor;flooring",
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
INTERIOR = {
|
| 95 |
+
"#787878": "wall",
|
| 96 |
+
"#787850": "ceiling",
|
| 97 |
+
"#08FF33": "door;double;door",
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
KITCHEN = {
|
| 101 |
+
"#00FF29": "kitchen;island",
|
| 102 |
+
"#14FF00": "refrigerator;icebox",
|
| 103 |
+
"#00A3FF": "sink",
|
| 104 |
+
"#EB0CFF": "counter",
|
| 105 |
+
"#D6FF00": "dishwasher;dish;washer;dishwashing;machine",
|
| 106 |
+
"#FF00EB": "microwave;microwave;oven",
|
| 107 |
+
"#47FF00": "oven",
|
| 108 |
+
"#66FF00": "clock",
|
| 109 |
+
"#00FFB8": "plate",
|
| 110 |
+
"#19C2C2": "glass;drinking;glass",
|
| 111 |
+
"#00FF99": "bar",
|
| 112 |
+
"#00FF0A": "bottle",
|
| 113 |
+
"#FF7000": "buffet;counter;sideboard",
|
| 114 |
+
"#B800FF": "washer;automatic;washer;washing;machine",
|
| 115 |
+
"#00FF70": "coffee;table;cocktail;table",
|
| 116 |
+
"#008FFF": "countertop",
|
| 117 |
+
"#33FF00": "stove;kitchen;stove;range;kitchen;range;cooking;stove",
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
LIVINGROOM = {
|
| 121 |
+
"#FA0A0F": "fireplace;hearth;open;fireplace",
|
| 122 |
+
"#FF4700": "pool;table;billiard;table;snooker;table",
|
| 123 |
+
}
|
| 124 |
+
|
| 125 |
+
OFFICE = {
|
| 126 |
+
"#00FFAD": "computer;computing;machine;computing;device;data;processor;electronic;computer;information;processing;system",
|
| 127 |
+
"#00FFF5": "bookcase",
|
| 128 |
+
"#0633FF": "chest;of;drawers;chest;bureau;dresser",
|
| 129 |
+
"#005CFF": "monitor;monitoring;device",
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
COLOR_MAPPING_CATEGORY_ = {
|
| 134 |
+
'keep background': {'#FFFFFF': 'background'},
|
| 135 |
+
'trivia': TRIVIA,
|
| 136 |
+
'objects': OBJECTS,
|
| 137 |
+
'sitting': SITTING,
|
| 138 |
+
'lighting': LIGHTING,
|
| 139 |
+
'tables': TABLES,
|
| 140 |
+
'closets': CLOSETS,
|
| 141 |
+
'bathroom': BATHROOM,
|
| 142 |
+
'windows': WINDOWS,
|
| 143 |
+
'floor': FLOOR,
|
| 144 |
+
'interior': INTERIOR,
|
| 145 |
+
'kitchen': KITCHEN,
|
| 146 |
+
'livingroom': LIVINGROOM,
|
| 147 |
+
'office': OFFICE}
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
COLOR_MAPPING_ = {
|
| 151 |
+
'#FFFFFF': 'background',
|
| 152 |
+
"#787878": "wall",
|
| 153 |
+
"#B47878": "building;edifice",
|
| 154 |
+
"#06E6E6": "sky",
|
| 155 |
+
"#503232": "floor;flooring",
|
| 156 |
+
"#04C803": "tree",
|
| 157 |
+
"#787850": "ceiling",
|
| 158 |
+
"#8C8C8C": "road;route",
|
| 159 |
+
"#CC05FF": "bed",
|
| 160 |
+
"#E6E6E6": "windowpane;window",
|
| 161 |
+
"#04FA07": "grass",
|
| 162 |
+
"#E005FF": "cabinet",
|
| 163 |
+
"#EBFF07": "sidewalk;pavement",
|
| 164 |
+
"#96053D": "person;individual;someone;somebody;mortal;soul",
|
| 165 |
+
"#787846": "earth;ground",
|
| 166 |
+
"#08FF33": "door;double;door",
|
| 167 |
+
"#FF0652": "table",
|
| 168 |
+
"#8FFF8C": "mountain;mount",
|
| 169 |
+
"#CCFF04": "plant;flora;plant;life",
|
| 170 |
+
"#FF3307": "curtain;drape;drapery;mantle;pall",
|
| 171 |
+
"#CC4603": "chair",
|
| 172 |
+
"#0066C8": "car;auto;automobile;machine;motorcar",
|
| 173 |
+
"#3DE6FA": "water",
|
| 174 |
+
"#FF0633": "painting;picture",
|
| 175 |
+
"#0B66FF": "sofa;couch;lounge",
|
| 176 |
+
"#FF0747": "shelf",
|
| 177 |
+
"#FF09E0": "house",
|
| 178 |
+
"#0907E6": "sea",
|
| 179 |
+
"#DCDCDC": "mirror",
|
| 180 |
+
"#FF095C": "rug;carpet;carpeting",
|
| 181 |
+
"#7009FF": "field",
|
| 182 |
+
"#08FFD6": "armchair",
|
| 183 |
+
"#07FFE0": "seat",
|
| 184 |
+
"#FFB806": "fence;fencing",
|
| 185 |
+
"#0AFF47": "desk",
|
| 186 |
+
"#FF290A": "rock;stone",
|
| 187 |
+
"#07FFFF": "wardrobe;closet;press",
|
| 188 |
+
"#E0FF08": "lamp",
|
| 189 |
+
"#6608FF": "bathtub;bathing;tub;bath;tub",
|
| 190 |
+
"#FF3D06": "railing;rail",
|
| 191 |
+
"#FFC207": "cushion",
|
| 192 |
+
"#FF7A08": "base;pedestal;stand",
|
| 193 |
+
"#00FF14": "box",
|
| 194 |
+
"#FF0829": "column;pillar",
|
| 195 |
+
"#FF0599": "signboard;sign",
|
| 196 |
+
"#0633FF": "chest;of;drawers;chest;bureau;dresser",
|
| 197 |
+
"#EB0CFF": "counter",
|
| 198 |
+
"#A09614": "sand",
|
| 199 |
+
"#00A3FF": "sink",
|
| 200 |
+
"#8C8C8C": "skyscraper",
|
| 201 |
+
"#FA0A0F": "fireplace;hearth;open;fireplace",
|
| 202 |
+
"#14FF00": "refrigerator;icebox",
|
| 203 |
+
"#1FFF00": "grandstand;covered;stand",
|
| 204 |
+
"#FF1F00": "path",
|
| 205 |
+
"#FFE000": "stairs;steps",
|
| 206 |
+
"#99FF00": "runway",
|
| 207 |
+
"#0000FF": "case;display;case;showcase;vitrine",
|
| 208 |
+
"#FF4700": "pool;table;billiard;table;snooker;table",
|
| 209 |
+
"#00EBFF": "pillow",
|
| 210 |
+
"#00ADFF": "screen;door;screen",
|
| 211 |
+
"#1F00FF": "stairway;staircase",
|
| 212 |
+
"#0BC8C8": "river",
|
| 213 |
+
"#FF5200": "bridge;span",
|
| 214 |
+
"#00FFF5": "bookcase",
|
| 215 |
+
"#003DFF": "blind;screen",
|
| 216 |
+
"#00FF70": "coffee;table;cocktail;table",
|
| 217 |
+
"#00FF85": "toilet;can;commode;crapper;pot;potty;stool;throne",
|
| 218 |
+
"#FF0000": "flower",
|
| 219 |
+
"#FFA300": "book",
|
| 220 |
+
"#FF6600": "hill",
|
| 221 |
+
"#C2FF00": "bench",
|
| 222 |
+
"#008FFF": "countertop",
|
| 223 |
+
"#33FF00": "stove;kitchen;stove;range;kitchen;range;cooking;stove",
|
| 224 |
+
"#0052FF": "palm;palm;tree",
|
| 225 |
+
"#00FF29": "kitchen;island",
|
| 226 |
+
"#00FFAD": "computer;computing;machine;computing;device;data;processor;electronic;computer;information;processing;system",
|
| 227 |
+
"#0A00FF": "swivel;chair",
|
| 228 |
+
"#ADFF00": "boat",
|
| 229 |
+
"#00FF99": "bar",
|
| 230 |
+
"#FF5C00": "arcade;machine",
|
| 231 |
+
"#FF00FF": "hovel;hut;hutch;shack;shanty",
|
| 232 |
+
"#FF00F5": "bus;autobus;coach;charabanc;double-decker;jitney;motorbus;motorcoach;omnibus;passenger;vehicle",
|
| 233 |
+
"#FF0066": "towel",
|
| 234 |
+
"#FFAD00": "light;light;source",
|
| 235 |
+
"#FF0014": "truck;motortruck",
|
| 236 |
+
"#FFB8B8": "tower",
|
| 237 |
+
"#001FFF": "chandelier;pendant;pendent",
|
| 238 |
+
"#00FF3D": "awning;sunshade;sunblind",
|
| 239 |
+
"#0047FF": "streetlight;street;lamp",
|
| 240 |
+
"#FF00CC": "booth;cubicle;stall;kiosk",
|
| 241 |
+
"#00FFC2": "television;television;receiver;television;set;tv;tv;set;idiot;box;boob;tube;telly;goggle;box",
|
| 242 |
+
"#00FF52": "airplane;aeroplane;plane",
|
| 243 |
+
"#000AFF": "dirt;track",
|
| 244 |
+
"#0070FF": "apparel;wearing;apparel;dress;clothes",
|
| 245 |
+
"#3300FF": "pole",
|
| 246 |
+
"#00C2FF": "land;ground;soil",
|
| 247 |
+
"#007AFF": "bannister;banister;balustrade;balusters;handrail",
|
| 248 |
+
"#00FFA3": "escalator;moving;staircase;moving;stairway",
|
| 249 |
+
"#FF9900": "ottoman;pouf;pouffe;puff;hassock",
|
| 250 |
+
"#00FF0A": "bottle",
|
| 251 |
+
"#FF7000": "buffet;counter;sideboard",
|
| 252 |
+
"#8FFF00": "poster;posting;placard;notice;bill;card",
|
| 253 |
+
"#5200FF": "stage",
|
| 254 |
+
"#A3FF00": "van",
|
| 255 |
+
"#FFEB00": "ship",
|
| 256 |
+
"#08B8AA": "fountain",
|
| 257 |
+
"#8500FF": "conveyer;belt;conveyor;belt;conveyer;conveyor;transporter",
|
| 258 |
+
"#00FF5C": "canopy",
|
| 259 |
+
"#B800FF": "washer;automatic;washer;washing;machine",
|
| 260 |
+
"#FF001F": "plaything;toy",
|
| 261 |
+
"#00B8FF": "swimming;pool;swimming;bath;natatorium",
|
| 262 |
+
"#00D6FF": "stool",
|
| 263 |
+
"#FF0070": "barrel;cask",
|
| 264 |
+
"#5CFF00": "basket;handbasket",
|
| 265 |
+
"#00E0FF": "waterfall;falls",
|
| 266 |
+
"#70E0FF": "tent;collapsible;shelter",
|
| 267 |
+
"#46B8A0": "bag",
|
| 268 |
+
"#A300FF": "minibike;motorbike",
|
| 269 |
+
"#9900FF": "cradle",
|
| 270 |
+
"#47FF00": "oven",
|
| 271 |
+
"#FF00A3": "ball",
|
| 272 |
+
"#FFCC00": "food;solid;food",
|
| 273 |
+
"#FF008F": "step;stair",
|
| 274 |
+
"#00FFEB": "tank;storage;tank",
|
| 275 |
+
"#85FF00": "trade;name;brand;name;brand;marque",
|
| 276 |
+
"#FF00EB": "microwave;microwave;oven",
|
| 277 |
+
"#F500FF": "pot;flowerpot",
|
| 278 |
+
"#FF007A": "animal;animate;being;beast;brute;creature;fauna",
|
| 279 |
+
"#FFF500": "bicycle;bike;wheel;cycle",
|
| 280 |
+
"#0ABED4": "lake",
|
| 281 |
+
"#D6FF00": "dishwasher;dish;washer;dishwashing;machine",
|
| 282 |
+
"#00CCFF": "screen;silver;screen;projection;screen",
|
| 283 |
+
"#1400FF": "blanket;cover",
|
| 284 |
+
"#FFFF00": "sculpture",
|
| 285 |
+
"#0099FF": "hood;exhaust;hood",
|
| 286 |
+
"#0029FF": "sconce",
|
| 287 |
+
"#00FFCC": "vase",
|
| 288 |
+
"#2900FF": "traffic;light;traffic;signal;stoplight",
|
| 289 |
+
"#29FF00": "tray",
|
| 290 |
+
"#AD00FF": "ashcan;trash;can;garbage;can;wastebin;ash;bin;ash-bin;ashbin;dustbin;trash;barrel;trash;bin",
|
| 291 |
+
"#00F5FF": "fan",
|
| 292 |
+
"#4700FF": "pier;wharf;wharfage;dock",
|
| 293 |
+
"#7A00FF": "crt;screen",
|
| 294 |
+
"#00FFB8": "plate",
|
| 295 |
+
"#005CFF": "monitor;monitoring;device",
|
| 296 |
+
"#B8FF00": "bulletin;board;notice;board",
|
| 297 |
+
"#0085FF": "shower",
|
| 298 |
+
"#FFD600": "radiator",
|
| 299 |
+
"#19C2C2": "glass;drinking;glass",
|
| 300 |
+
"#66FF00": "clock",
|
| 301 |
+
"#5C00FF": "flag",
|
| 302 |
+
}
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
def ade_palette() -> List[List[int]]:
|
| 306 |
+
"""ADE20K palette that maps each class to RGB values."""
|
| 307 |
+
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|
| 308 |
+
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
|
| 309 |
+
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
|
| 310 |
+
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
|
| 311 |
+
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
|
| 312 |
+
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
|
| 313 |
+
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
|
| 314 |
+
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
|
| 315 |
+
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
|
| 316 |
+
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
|
| 317 |
+
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
|
| 318 |
+
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
|
| 319 |
+
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
|
| 320 |
+
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
|
| 321 |
+
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
|
| 322 |
+
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
|
| 323 |
+
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
|
| 324 |
+
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
|
| 325 |
+
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
|
| 326 |
+
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
|
| 327 |
+
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
|
| 328 |
+
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
|
| 329 |
+
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
|
| 330 |
+
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
|
| 331 |
+
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
|
| 332 |
+
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
|
| 333 |
+
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
|
| 334 |
+
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
|
| 335 |
+
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
|
| 336 |
+
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
|
| 337 |
+
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
|
| 338 |
+
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
|
| 339 |
+
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
|
| 340 |
+
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
|
| 341 |
+
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
|
| 342 |
+
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
|
| 343 |
+
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
|
| 344 |
+
[102, 255, 0], [92, 0, 255]]
|
palette.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict
|
| 2 |
+
from colors import COLOR_MAPPING_, COLOR_MAPPING_CATEGORY_
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def convert_hex_to_rgba(hex_code: str) -> str:
|
| 6 |
+
"""Convert hex code to rgba.
|
| 7 |
+
Args:
|
| 8 |
+
hex_code (str): hex string
|
| 9 |
+
Returns:
|
| 10 |
+
str: rgba string
|
| 11 |
+
"""
|
| 12 |
+
hex_code = hex_code.lstrip('#')
|
| 13 |
+
return "rgba(" + str(int(hex_code[0:2], 16)) + ", " + str(int(hex_code[2:4], 16)) + ", " + str(int(hex_code[4:6], 16)) + ", 1.0)"
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def convert_dict_to_rgba(color_dict: Dict) -> Dict:
|
| 17 |
+
"""Convert hex code to rgba for all elements in a dictionary.
|
| 18 |
+
Args:
|
| 19 |
+
color_dict (Dict): color dictionary
|
| 20 |
+
Returns:
|
| 21 |
+
Dict: color dictionary with rgba values
|
| 22 |
+
"""
|
| 23 |
+
updated_dict = {}
|
| 24 |
+
for k, v in color_dict.items():
|
| 25 |
+
updated_dict[convert_hex_to_rgba(k)] = v
|
| 26 |
+
return updated_dict
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def convert_nested_dict_to_rgba(nested_dict):
|
| 30 |
+
updated_dict = {}
|
| 31 |
+
for k, v in nested_dict.items():
|
| 32 |
+
updated_dict[k] = convert_dict_to_rgba(v)
|
| 33 |
+
return updated_dict
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
COLOR_MAPPING = convert_dict_to_rgba(COLOR_MAPPING_)
|
| 37 |
+
COLOR_MAPPING_CATEGORY = convert_nested_dict_to_rgba(COLOR_MAPPING_CATEGORY_)
|
utils.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gc
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import torch
|
| 6 |
+
from scipy.signal import fftconvolve
|
| 7 |
+
|
| 8 |
+
from palette import COLOR_MAPPING, COLOR_MAPPING_
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def to_rgb(color: str) -> tuple:
|
| 12 |
+
"""Convert hex color to rgb.
|
| 13 |
+
Args:
|
| 14 |
+
color (str): hex color
|
| 15 |
+
Returns:
|
| 16 |
+
tuple: rgb color
|
| 17 |
+
"""
|
| 18 |
+
return tuple(int(color[i:i+2], 16) for i in (1, 3, 5))
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def map_colors(color: str) -> str:
|
| 22 |
+
"""Map color to hex value.
|
| 23 |
+
Args:
|
| 24 |
+
color (str): color name
|
| 25 |
+
Returns:
|
| 26 |
+
str: hex value
|
| 27 |
+
"""
|
| 28 |
+
return COLOR_MAPPING[color]
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def map_colors_rgb(color: tuple) -> str:
|
| 32 |
+
return COLOR_MAPPING_RGB[color]
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def convolution(mask: Image.Image, size=9) -> Image:
|
| 36 |
+
"""Method to blur the mask
|
| 37 |
+
Args:
|
| 38 |
+
mask (Image): masking image
|
| 39 |
+
size (int, optional): size of the blur. Defaults to 9.
|
| 40 |
+
Returns:
|
| 41 |
+
Image: blurred mask
|
| 42 |
+
"""
|
| 43 |
+
mask = np.array(mask.convert("L"))
|
| 44 |
+
conv = np.ones((size, size)) / size**2
|
| 45 |
+
mask_blended = fftconvolve(mask, conv, 'same')
|
| 46 |
+
mask_blended = mask_blended.astype(np.uint8).copy()
|
| 47 |
+
|
| 48 |
+
border = size
|
| 49 |
+
|
| 50 |
+
# replace borders with original values
|
| 51 |
+
mask_blended[:border, :] = mask[:border, :]
|
| 52 |
+
mask_blended[-border:, :] = mask[-border:, :]
|
| 53 |
+
mask_blended[:, :border] = mask[:, :border]
|
| 54 |
+
mask_blended[:, -border:] = mask[:, -border:]
|
| 55 |
+
|
| 56 |
+
return Image.fromarray(mask_blended).convert("L")
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def flush():
|
| 60 |
+
gc.collect()
|
| 61 |
+
torch.cuda.empty_cache()
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def postprocess_image_masking(inpainted: Image, image: Image,
|
| 65 |
+
mask: Image) -> Image:
|
| 66 |
+
"""Method to postprocess the inpainted image
|
| 67 |
+
Args:
|
| 68 |
+
inpainted (Image): inpainted image
|
| 69 |
+
image (Image): original image
|
| 70 |
+
mask (Image): mask
|
| 71 |
+
Returns:
|
| 72 |
+
Image: inpainted image
|
| 73 |
+
"""
|
| 74 |
+
final_inpainted = Image.composite(inpainted.convert("RGBA"),
|
| 75 |
+
image.convert("RGBA"), mask)
|
| 76 |
+
return final_inpainted.convert("RGB")
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
COLOR_NAMES = list(COLOR_MAPPING.keys())
|
| 80 |
+
COLOR_RGB = [to_rgb(k) for k in COLOR_MAPPING_.keys()] + [(0, 0, 0),
|
| 81 |
+
(255, 255, 255)]
|
| 82 |
+
INVERSE_COLORS = {v: to_rgb(k) for k, v in COLOR_MAPPING_.items()}
|
| 83 |
+
COLOR_MAPPING_RGB = {to_rgb(k): v for k, v in COLOR_MAPPING_.items()}
|