Spaces:
Running
on
Zero
Running
on
Zero
app.py overall upgrade + img gen Chroma
Browse files
app.py
CHANGED
|
@@ -1,146 +1,470 @@
|
|
| 1 |
import os
|
| 2 |
-
|
| 3 |
-
|
|
|
|
| 4 |
|
| 5 |
-
import gradio as gr
|
| 6 |
import spaces
|
|
|
|
| 7 |
import torch
|
| 8 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
|
|
|
| 24 |
models_cache = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
def
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
@spaces.GPU(
|
| 43 |
-
def
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
temperature=temperature,
|
| 77 |
-
num_beams=1,
|
| 78 |
-
repetition_penalty=repetition_penalty,
|
| 79 |
-
)
|
| 80 |
-
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 81 |
-
t.start()
|
| 82 |
-
|
| 83 |
-
outputs = []
|
| 84 |
-
for text in streamer:
|
| 85 |
-
outputs.append(text)
|
| 86 |
-
yield "".join(outputs)
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
value=DEFAULT_MAX_NEW_TOKENS,
|
| 100 |
-
),
|
| 101 |
-
gr.Slider(
|
| 102 |
-
label="Temperature",
|
| 103 |
-
minimum=0.1,
|
| 104 |
-
maximum=4.0,
|
| 105 |
-
step=0.1,
|
| 106 |
-
value=0.6,
|
| 107 |
-
),
|
| 108 |
-
gr.Slider(
|
| 109 |
-
label="Top-p (nucleus sampling)",
|
| 110 |
-
minimum=0.05,
|
| 111 |
-
maximum=1.0,
|
| 112 |
-
step=0.05,
|
| 113 |
-
value=0.9,
|
| 114 |
-
),
|
| 115 |
-
gr.Slider(
|
| 116 |
-
label="Top-k",
|
| 117 |
-
minimum=1,
|
| 118 |
-
maximum=1000,
|
| 119 |
-
step=1,
|
| 120 |
-
value=50,
|
| 121 |
-
),
|
| 122 |
-
gr.Slider(
|
| 123 |
-
label="Repetition penalty",
|
| 124 |
-
minimum=1.0,
|
| 125 |
-
maximum=2.0,
|
| 126 |
-
step=0.05,
|
| 127 |
-
value=1.2,
|
| 128 |
-
),
|
| 129 |
-
],
|
| 130 |
-
stop_btn=None,
|
| 131 |
-
examples=[
|
| 132 |
-
["### Instruction: Create stable diffusion metadata based on the given english description. Luminia ### Input: favorites and popular SFW ### Response:"],
|
| 133 |
-
["### Instruction: Provide tips on stable diffusion to optimize low token prompts and enhance quality include prompt example. ### Response:"],
|
| 134 |
-
],
|
| 135 |
-
)
|
| 136 |
|
| 137 |
-
with gr.Blocks(css=
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
-
|
| 146 |
-
demo.queue(max_size=20).launch()
|
|
|
|
| 1 |
import os
|
| 2 |
+
import gc
|
| 3 |
+
import subprocess
|
| 4 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 5 |
|
|
|
|
| 6 |
import spaces
|
| 7 |
+
import gradio as gr
|
| 8 |
import torch
|
| 9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
|
| 10 |
+
from threading import Thread, Event
|
| 11 |
+
import time
|
| 12 |
+
import uuid
|
| 13 |
+
import re
|
| 14 |
+
from diffusers import ChromaPipeline
|
| 15 |
|
| 16 |
+
# Pre-load ONLY Chroma (not LLMs, to support custom models)
|
| 17 |
+
print("Loading Chroma1-HD...")
|
| 18 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
+
print(f"Device at module level: {device}")
|
| 20 |
|
| 21 |
+
chroma_pipe = ChromaPipeline.from_pretrained(
|
| 22 |
+
"lodestones/Chroma1-HD",
|
| 23 |
+
torch_dtype=torch.bfloat16
|
| 24 |
+
)
|
| 25 |
+
chroma_pipe = chroma_pipe.to(device)
|
| 26 |
+
print("✓ Chroma1-HD ready")
|
| 27 |
|
| 28 |
+
MODEL_CONFIGS = {
|
| 29 |
+
"Nekochu/Luminia-13B-v3": {
|
| 30 |
+
"system": "",
|
| 31 |
+
"examples": [
|
| 32 |
+
"### Instruction:\nCreate stable diffusion metadata based on the given english description. Luminia\n\n### Input:\nfavorites and popular SFW",
|
| 33 |
+
"### Instruction:\nProvide tips on stable diffusion to optimize low token prompts and enhance quality include prompt example."
|
| 34 |
+
],
|
| 35 |
+
"supports_image_gen": True,
|
| 36 |
+
"sd_temp": 0.3,
|
| 37 |
+
"sd_top_p": 0.8,
|
| 38 |
+
"branch": None # Uses main/default branch
|
| 39 |
+
},
|
| 40 |
+
"Nekochu/Luminia-8B-v4-Chan": {
|
| 41 |
+
"system": "write a response like a 4chan user",
|
| 42 |
+
"examples": [],
|
| 43 |
+
"supports_image_gen": False,
|
| 44 |
+
"branch": "Llama-3-8B-4Chan_SD_QLoRa"
|
| 45 |
+
},
|
| 46 |
+
"Nekochu/Luminia-8B-RP": {
|
| 47 |
+
"system": "You are a knowledgeable and empathetic mental health professional.",
|
| 48 |
+
"examples": ["How to cope with anxiety?"],
|
| 49 |
+
"supports_image_gen": False,
|
| 50 |
+
"branch": None
|
| 51 |
+
}
|
| 52 |
+
}
|
| 53 |
|
| 54 |
+
DEFAULT_MODELS = list(MODEL_CONFIGS.keys())
|
| 55 |
models_cache = {}
|
| 56 |
+
stop_event = Event()
|
| 57 |
+
current_thread = None
|
| 58 |
+
MAX_CACHE_SIZE = 2
|
| 59 |
+
DEFAULT_MODEL = DEFAULT_MODELS[0]
|
| 60 |
|
| 61 |
+
def parse_model_id(model_id_str):
|
| 62 |
+
"""Parse model ID and optional branch (format: 'model_id:branch')"""
|
| 63 |
+
if ':' in model_id_str:
|
| 64 |
+
parts = model_id_str.split(':', 1)
|
| 65 |
+
return parts[0], parts[1]
|
| 66 |
+
|
| 67 |
+
if model_id_str in MODEL_CONFIGS: # Check if it's a known model with a specific branch
|
| 68 |
+
config = MODEL_CONFIGS[model_id_str]
|
| 69 |
+
return model_id_str, config.get('branch', None)
|
| 70 |
+
|
| 71 |
+
return model_id_str, None
|
| 72 |
|
| 73 |
+
def parse_sd_metadata(text: str):
|
| 74 |
+
"""Parse SD metadata"""
|
| 75 |
+
metadata = {
|
| 76 |
+
'prompt': '',
|
| 77 |
+
'negative_prompt': '',
|
| 78 |
+
'steps': 25,
|
| 79 |
+
'cfg_scale': 7.0,
|
| 80 |
+
'seed': 42,
|
| 81 |
+
'width': 1024,
|
| 82 |
+
'height': 1024
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
if not text:
|
| 86 |
+
metadata['prompt'] = '(masterpiece, best quality), 1girl'
|
| 87 |
+
return metadata
|
| 88 |
+
|
| 89 |
+
try:
|
| 90 |
+
if "Negative prompt:" in text:
|
| 91 |
+
parts = text.split("Negative prompt:", 1)
|
| 92 |
+
metadata['prompt'] = parts[0].strip().rstrip('.,;')[:500]
|
| 93 |
+
|
| 94 |
+
if len(parts) > 1:
|
| 95 |
+
neg_section = parts[1]
|
| 96 |
+
param_match = re.search(r'(Steps:|Sampler:|CFG scale:|Seed:|Size:)', neg_section)
|
| 97 |
+
if param_match:
|
| 98 |
+
metadata['negative_prompt'] = neg_section[:param_match.start()].strip().rstrip('.,;')[:300]
|
| 99 |
+
else:
|
| 100 |
+
metadata['negative_prompt'] = neg_section.strip().rstrip('.,;')[:300]
|
| 101 |
+
else:
|
| 102 |
+
param_match = re.search(r'(Steps:|Sampler:|CFG scale:|Seed:|Size:)', text)
|
| 103 |
+
if param_match:
|
| 104 |
+
metadata['prompt'] = text[:param_match.start()].strip().rstrip('.,;')[:500]
|
| 105 |
+
else:
|
| 106 |
+
metadata['prompt'] = text.strip()[:500]
|
| 107 |
+
|
| 108 |
+
patterns = {
|
| 109 |
+
'Steps': (r'Steps:\s*(\d+)', lambda x: min(int(x), 30)),
|
| 110 |
+
'CFG scale': (r'CFG scale:\s*([\d.]+)', float),
|
| 111 |
+
'Seed': (r'Seed:\s*(\d+)', lambda x: int(x) % (2**32)),
|
| 112 |
+
'Size': (r'Size:\s*(\d+)x(\d+)', None)
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
+
for key, (pattern, converter) in patterns.items():
|
| 116 |
+
match = re.search(pattern, text)
|
| 117 |
+
if match:
|
| 118 |
+
try:
|
| 119 |
+
if key == 'Size':
|
| 120 |
+
metadata['width'] = min(max(int(match.group(1)), 512), 1536)
|
| 121 |
+
metadata['height'] = min(max(int(match.group(2)), 512), 1536)
|
| 122 |
+
else:
|
| 123 |
+
metadata[key.lower().replace(' ', '_')] = converter(match.group(1))
|
| 124 |
+
except:
|
| 125 |
+
pass
|
| 126 |
+
except:
|
| 127 |
+
pass
|
| 128 |
+
|
| 129 |
+
if not metadata['prompt']:
|
| 130 |
+
metadata['prompt'] = '(masterpiece, best quality), 1girl'
|
| 131 |
+
|
| 132 |
+
return metadata
|
| 133 |
|
| 134 |
+
def clear_old_cache():
|
| 135 |
+
global models_cache
|
| 136 |
+
if len(models_cache) >= MAX_CACHE_SIZE:
|
| 137 |
+
oldest = min(models_cache.items(), key=lambda x: x[1].get('last_used', 0))
|
| 138 |
+
del models_cache[oldest[0]]
|
| 139 |
+
gc.collect()
|
| 140 |
+
torch.cuda.empty_cache()
|
| 141 |
|
| 142 |
+
@spaces.GPU(duration=119)
|
| 143 |
+
def generate_text_gpu(model_id_str, message, history, system, temp, top_p, top_k, max_tokens, rep_penalty):
|
| 144 |
+
"""Text generation with branch support"""
|
| 145 |
+
global models_cache, stop_event, current_thread
|
| 146 |
+
stop_event.clear()
|
| 147 |
+
|
| 148 |
+
model_id, branch = parse_model_id(model_id_str) # Parse model ID and branch
|
| 149 |
+
cache_key = f"{model_id}:{branch}" if branch else model_id
|
| 150 |
+
|
| 151 |
+
config = MODEL_CONFIGS.get(model_id, {})
|
| 152 |
+
if "Luminia-13B-v3" in model_id and ("stable diffusion" in message.lower() or "metadata" in message.lower()):
|
| 153 |
+
temp = config.get('sd_temp', 0.3)
|
| 154 |
+
top_p = config.get('sd_top_p', 0.8)
|
| 155 |
+
print(f"Using SD settings: temp={temp}, top_p={top_p}")
|
| 156 |
+
|
| 157 |
+
if cache_key not in models_cache:
|
| 158 |
+
clear_old_cache()
|
| 159 |
+
try:
|
| 160 |
+
yield history + [[message, f"📥 Loading {model_id}{f' ({branch})' if branch else ''}..."]], "Loading..."
|
| 161 |
+
|
| 162 |
+
# Load with branch/revision support
|
| 163 |
+
load_kwargs = {"trust_remote_code": True}
|
| 164 |
+
if branch:
|
| 165 |
+
load_kwargs["revision"] = branch
|
| 166 |
+
print(f"Loading from branch: {branch}")
|
| 167 |
+
|
| 168 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, **load_kwargs)
|
| 169 |
+
tokenizer.pad_token = tokenizer.eos_token or tokenizer.unk_token
|
| 170 |
+
|
| 171 |
+
bnb_config = BitsAndBytesConfig(
|
| 172 |
+
load_in_4bit=True,
|
| 173 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 174 |
+
bnb_4bit_quant_type="nf4",
|
| 175 |
+
bnb_4bit_use_double_quant=True
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
model_kwargs = {
|
| 179 |
+
"quantization_config": bnb_config,
|
| 180 |
+
"device_map": "auto",
|
| 181 |
+
"trust_remote_code": True,
|
| 182 |
+
"attn_implementation": "flash_attention_2" if torch.cuda.is_available() else None,
|
| 183 |
+
"low_cpu_mem_usage": True
|
| 184 |
+
}
|
| 185 |
+
if branch:
|
| 186 |
+
model_kwargs["revision"] = branch
|
| 187 |
+
|
| 188 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, **model_kwargs)
|
| 189 |
+
|
| 190 |
+
models_cache[cache_key] = {
|
| 191 |
+
"model": model,
|
| 192 |
+
"tokenizer": tokenizer,
|
| 193 |
+
"last_used": time.time()
|
| 194 |
+
}
|
| 195 |
+
|
| 196 |
+
except Exception as e:
|
| 197 |
+
yield history + [[message, f"❌ Failed: {str(e)[:200]}"]], "Error"
|
| 198 |
+
return
|
| 199 |
+
|
| 200 |
+
models_cache[cache_key]['last_used'] = time.time()
|
| 201 |
+
model = models_cache[cache_key]["model"]
|
| 202 |
+
tokenizer = models_cache[cache_key]["tokenizer"]
|
| 203 |
+
|
| 204 |
+
prompt = ""
|
| 205 |
+
if system:
|
| 206 |
+
prompt = f"{system}\n\n"
|
| 207 |
+
|
| 208 |
+
for user_msg, assistant_msg in history:
|
| 209 |
+
if "### Instruction:" in user_msg:
|
| 210 |
+
prompt += f"{user_msg}\n### Response:\n{assistant_msg}\n\n"
|
| 211 |
+
else:
|
| 212 |
+
prompt += f"### Instruction:\n{user_msg}\n\n### Response:\n{assistant_msg}\n\n"
|
| 213 |
+
|
| 214 |
+
if "### Instruction:" in message and "### Response:" not in message:
|
| 215 |
+
prompt += f"{message}\n### Response:\n"
|
| 216 |
+
elif "### Instruction:" not in message:
|
| 217 |
+
prompt += f"### Instruction:\n{message}\n\n### Response:\n"
|
| 218 |
+
else:
|
| 219 |
+
prompt += message
|
| 220 |
+
|
| 221 |
+
print(f"Prompt ending: ...{prompt[-200:]}")
|
| 222 |
+
|
| 223 |
+
try:
|
| 224 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048)
|
| 225 |
+
input_tokens = inputs['input_ids'].shape[1]
|
| 226 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 227 |
+
except Exception as e:
|
| 228 |
+
yield history + [[message, f"❌ Tokenization failed: {str(e)}"]], "Error"
|
| 229 |
+
return
|
| 230 |
+
|
| 231 |
+
print(f"📝 {input_tokens} tokens | Temp: {temp} | Top-p: {top_p}")
|
| 232 |
+
|
| 233 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=5)
|
| 234 |
+
gen_kwargs = {
|
| 235 |
+
**inputs,
|
| 236 |
+
"streamer": streamer,
|
| 237 |
+
"max_new_tokens": min(max_tokens, 2048),
|
| 238 |
+
"temperature": max(temp, 0.01),
|
| 239 |
+
"top_p": top_p,
|
| 240 |
+
"top_k": top_k,
|
| 241 |
+
"repetition_penalty": rep_penalty,
|
| 242 |
+
"do_sample": temp > 0.01,
|
| 243 |
+
"pad_token_id": tokenizer.pad_token_id
|
| 244 |
+
}
|
| 245 |
+
|
| 246 |
+
current_thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
| 247 |
+
current_thread.start()
|
| 248 |
+
|
| 249 |
+
start_time = time.time()
|
| 250 |
+
partial = ""
|
| 251 |
+
token_count = 0
|
| 252 |
+
|
| 253 |
+
try:
|
| 254 |
+
for text in streamer:
|
| 255 |
+
if stop_event.is_set():
|
| 256 |
+
break
|
| 257 |
+
partial += text
|
| 258 |
+
token_count = len(tokenizer.encode(partial, add_special_tokens=False))
|
| 259 |
+
elapsed = time.time() - start_time
|
| 260 |
+
if elapsed > 0:
|
| 261 |
+
yield history + [[message, partial]], f"⚡ {token_count} @ {token_count/elapsed:.1f} t/s"
|
| 262 |
+
except:
|
| 263 |
+
pass
|
| 264 |
+
finally:
|
| 265 |
+
if current_thread.is_alive():
|
| 266 |
+
stop_event.set()
|
| 267 |
+
current_thread.join(timeout=2)
|
| 268 |
+
|
| 269 |
+
final_time = time.time() - start_time
|
| 270 |
+
yield history + [[message, partial]], f"✅ {token_count} tokens in {final_time:.1f}s"
|
| 271 |
|
| 272 |
+
@spaces.GPU()
|
| 273 |
+
def generate_image_gpu(text_output):
|
| 274 |
+
"""Image generation with pre-loaded Chroma"""
|
| 275 |
+
global chroma_pipe
|
| 276 |
+
|
| 277 |
+
if not text_output or text_output.isspace():
|
| 278 |
+
return None, "❌ No valid text", gr.update(visible=False)
|
| 279 |
+
|
| 280 |
+
try:
|
| 281 |
+
metadata = parse_sd_metadata(text_output)
|
| 282 |
+
print(f"Generating: {metadata['width']}x{metadata['height']} | Steps: {metadata['steps']}")
|
| 283 |
+
|
| 284 |
+
if torch.cuda.is_available():
|
| 285 |
+
chroma_pipe = chroma_pipe.to("cuda")
|
| 286 |
+
|
| 287 |
+
generator = torch.Generator("cuda" if torch.cuda.is_available() else "cpu").manual_seed(metadata['seed'])
|
| 288 |
+
|
| 289 |
+
image = chroma_pipe(
|
| 290 |
+
prompt=metadata['prompt'],
|
| 291 |
+
negative_prompt=metadata['negative_prompt'],
|
| 292 |
+
generator=generator,
|
| 293 |
+
num_inference_steps=metadata['steps'],
|
| 294 |
+
guidance_scale=metadata['cfg_scale'],
|
| 295 |
+
width=metadata['width'],
|
| 296 |
+
height=metadata['height']
|
| 297 |
+
).images[0]
|
| 298 |
+
|
| 299 |
+
status = f"✅ {metadata['width']}x{metadata['height']} | {metadata['steps']} steps | CFG: {metadata['cfg_scale']} | Seed: {metadata['seed']}"
|
| 300 |
+
return image, status, gr.update(visible=False)
|
| 301 |
+
|
| 302 |
+
except Exception as e:
|
| 303 |
+
import traceback
|
| 304 |
+
traceback.print_exc()
|
| 305 |
+
return None, f"❌ Failed: {str(e)[:200]}", gr.update(visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
|
| 307 |
+
def stop_generation():
|
| 308 |
+
global stop_event, current_thread
|
| 309 |
+
stop_event.set()
|
| 310 |
+
if current_thread and current_thread.is_alive():
|
| 311 |
+
current_thread.join(timeout=2)
|
| 312 |
+
return gr.update(visible=True), gr.update(visible=False)
|
| 313 |
|
| 314 |
+
css = """
|
| 315 |
+
#chatbot {height: 305px;}
|
| 316 |
+
#input-row {display: flex; gap: 4px;}
|
| 317 |
+
#input-box {flex-grow: 1;}
|
| 318 |
+
#button-group {display: inline-flex; flex-direction: column; gap: 2px; width: 45px;}
|
| 319 |
+
#button-group button {width: 40px; height: 28px; padding: 2px; font-size: 14px;}
|
| 320 |
+
#status {font-size: 11px; color: #666; margin-top: 2px;}
|
| 321 |
+
#image-output {max-height: 400px; margin-top: 8px;}
|
| 322 |
+
#img-loading {font-size: 11px; color: #666; margin: 4px 0;}
|
| 323 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
+
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
| 326 |
+
with gr.Row():
|
| 327 |
+
with gr.Column(scale=4):
|
| 328 |
+
chatbot = gr.Chatbot(elem_id="chatbot", type="tuples")
|
| 329 |
+
|
| 330 |
+
with gr.Row(elem_id="input-row"):
|
| 331 |
+
msg = gr.Textbox(
|
| 332 |
+
label="Instruction",
|
| 333 |
+
lines=3,
|
| 334 |
+
elem_id="input-box",
|
| 335 |
+
value=MODEL_CONFIGS[DEFAULT_MODEL]["examples"][0] if MODEL_CONFIGS[DEFAULT_MODEL]["examples"] else "",
|
| 336 |
+
scale=10
|
| 337 |
+
)
|
| 338 |
+
with gr.Column(elem_id="button-group", scale=1, min_width=45):
|
| 339 |
+
submit = gr.Button("▶", variant="primary", size="sm")
|
| 340 |
+
stop = gr.Button("⏹", variant="stop", size="sm", visible=False)
|
| 341 |
+
undo = gr.Button("↩", size="sm")
|
| 342 |
+
clear = gr.Button("🗑", size="sm")
|
| 343 |
+
|
| 344 |
+
status = gr.Markdown("", elem_id="status")
|
| 345 |
+
|
| 346 |
+
with gr.Row():
|
| 347 |
+
image_btn = gr.Button("🎨 Generate Image using Chroma1-HD", visible=False, variant="secondary")
|
| 348 |
+
last_text = gr.Textbox(visible=False)
|
| 349 |
+
|
| 350 |
+
img_loading = gr.Markdown("", visible=False, elem_id="img-loading")
|
| 351 |
+
image_output = gr.Image(visible=False, elem_id="image-output")
|
| 352 |
+
image_status = gr.Markdown("", visible=False)
|
| 353 |
+
|
| 354 |
+
examples = gr.Examples(
|
| 355 |
+
examples=[[ex] for ex in MODEL_CONFIGS[DEFAULT_MODEL]["examples"] if ex],
|
| 356 |
+
inputs=msg,
|
| 357 |
+
label="Examples"
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
with gr.Column(scale=1):
|
| 361 |
+
model = gr.Dropdown(
|
| 362 |
+
DEFAULT_MODELS,
|
| 363 |
+
value=DEFAULT_MODEL,
|
| 364 |
+
label="Model",
|
| 365 |
+
allow_custom_value=True,
|
| 366 |
+
info="Custom HF ID + optional :branch"
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
with gr.Accordion("Settings", open=False):
|
| 370 |
+
system = gr.Textbox(
|
| 371 |
+
label="System Prompt",
|
| 372 |
+
value=MODEL_CONFIGS[DEFAULT_MODEL]["system"],
|
| 373 |
+
lines=2
|
| 374 |
+
)
|
| 375 |
+
temp = gr.Slider(0.1, 1.0, 0.35, label="Temperature")
|
| 376 |
+
top_p = gr.Slider(0.5, 1.0, 0.85, label="Top-p")
|
| 377 |
+
top_k = gr.Slider(10, 100, 40, label="Top-k")
|
| 378 |
+
rep_penalty = gr.Slider(1.0, 1.5, 1.1, label="Repetition Penalty")
|
| 379 |
+
max_tokens = gr.Slider(256, 2048, 1024, label="Max Tokens")
|
| 380 |
+
|
| 381 |
+
export_btn = gr.Button("💾 Export", size="sm")
|
| 382 |
+
export_file = gr.File(visible=False)
|
| 383 |
+
|
| 384 |
+
def update_ui_on_model_change(model_id_str):
|
| 385 |
+
"""Update all UI components when model changes"""
|
| 386 |
+
model_id, branch = parse_model_id(model_id_str)
|
| 387 |
+
config = MODEL_CONFIGS.get(model_id, {"system": "", "examples": [""], "supports_image_gen": False})
|
| 388 |
+
return (
|
| 389 |
+
config["system"],
|
| 390 |
+
config["examples"][0] if config["examples"] else "",
|
| 391 |
+
gr.update(visible=False), # image_btn
|
| 392 |
+
"", # last_text
|
| 393 |
+
None, # image_output (clear image)
|
| 394 |
+
gr.update(visible=False), # image_output visibility
|
| 395 |
+
"", # image_status text
|
| 396 |
+
gr.update(visible=False), # image_status visibility
|
| 397 |
+
gr.update(visible=False) # img_loading visibility
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
def check_image_availability(model_id_str, history):
|
| 401 |
+
model_id, _ = parse_model_id(model_id_str)
|
| 402 |
+
if "Luminia-13B-v3" in model_id and history and len(history) > 0:
|
| 403 |
+
return gr.update(visible=True), history[-1][1]
|
| 404 |
+
return gr.update(visible=False), ""
|
| 405 |
+
|
| 406 |
+
submit.click(
|
| 407 |
+
lambda: (gr.update(visible=False), gr.update(visible=True)),
|
| 408 |
+
None, [submit, stop]
|
| 409 |
+
).then(
|
| 410 |
+
generate_text_gpu,
|
| 411 |
+
[model, msg, chatbot, system, temp, top_p, top_k, max_tokens, rep_penalty],
|
| 412 |
+
[chatbot, status]
|
| 413 |
+
).then(
|
| 414 |
+
lambda: (gr.update(visible=True), gr.update(visible=False)),
|
| 415 |
+
None, [submit, stop]
|
| 416 |
+
).then(
|
| 417 |
+
check_image_availability,
|
| 418 |
+
[model, chatbot],
|
| 419 |
+
[image_btn, last_text]
|
| 420 |
+
)
|
| 421 |
+
|
| 422 |
+
stop.click(stop_generation, None, [submit, stop])
|
| 423 |
+
|
| 424 |
+
image_btn.click(
|
| 425 |
+
lambda: gr.update(value="🎨 Generating...", visible=True),
|
| 426 |
+
None, img_loading
|
| 427 |
+
).then(
|
| 428 |
+
generate_image_gpu,
|
| 429 |
+
last_text,
|
| 430 |
+
[image_output, image_status, img_loading]
|
| 431 |
+
).then(
|
| 432 |
+
lambda img: (gr.update(visible=img is not None), gr.update(visible=True)),
|
| 433 |
+
image_output,
|
| 434 |
+
[image_output, image_status]
|
| 435 |
+
)
|
| 436 |
+
|
| 437 |
+
model.change(
|
| 438 |
+
update_ui_on_model_change,
|
| 439 |
+
model,
|
| 440 |
+
[system, msg, image_btn, last_text, image_output, image_output, image_status, image_status, img_loading]
|
| 441 |
+
)
|
| 442 |
+
|
| 443 |
+
undo.click(
|
| 444 |
+
lambda h: h[:-1] if h else h,
|
| 445 |
+
chatbot, chatbot
|
| 446 |
+
).then(
|
| 447 |
+
check_image_availability,
|
| 448 |
+
[model, chatbot],
|
| 449 |
+
[image_btn, last_text]
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
clear.click(
|
| 453 |
+
lambda: ([], "", "", None, "", gr.update(visible=False), "", gr.update(visible=False)),
|
| 454 |
+
None, [chatbot, msg, status, image_output, image_status, image_btn, last_text, img_loading]
|
| 455 |
+
)
|
| 456 |
+
|
| 457 |
+
def export_chat(history):
|
| 458 |
+
if not history:
|
| 459 |
+
return None
|
| 460 |
+
content = "\n\n".join([f"User: {u}\n\nAssistant: {a}" for u, a in history])
|
| 461 |
+
path = f"chat_{uuid.uuid4().hex[:8]}.txt"
|
| 462 |
+
with open(path, "w", encoding="utf-8") as f:
|
| 463 |
+
f.write(content)
|
| 464 |
+
return path
|
| 465 |
+
|
| 466 |
+
export_btn.click(export_chat, chatbot, export_file).then(
|
| 467 |
+
lambda: gr.update(visible=True), None, export_file
|
| 468 |
+
)
|
| 469 |
|
| 470 |
+
demo.queue().launch()
|
|
|