NightRaven109 commited on
Commit
f05dca2
·
verified ·
1 Parent(s): f5f173f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -2
app.py CHANGED
@@ -8,7 +8,7 @@ import imageio as imageio
8
  import numpy as np
9
  import spaces
10
  import torch as torch
11
- from PIL import Image
12
  from tqdm import tqdm
13
  from pathlib import Path
14
  import gradio
@@ -23,9 +23,17 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
23
  if "HF_TOKEN_LOGIN" in os.environ:
24
  login(token=os.environ["HF_TOKEN_LOGIN"])
25
 
 
 
 
 
26
  def infer(path_input, seed=None):
27
  name_base, name_ext = os.path.splitext(os.path.basename(path_input))
28
  _, output_d = lotus(path_input, 'depth', seed, device)
 
 
 
 
29
  if not os.path.exists("files/output"):
30
  os.makedirs("files/output")
31
  d_save_path = os.path.join("files/output", f"{name_base}_d{name_ext}")
@@ -34,11 +42,25 @@ def infer(path_input, seed=None):
34
 
35
  def infer_video(path_input, seed=None):
36
  _, frames_d, fps = lotus_video(path_input, 'depth', seed, device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  if not os.path.exists("files/output"):
38
  os.makedirs("files/output")
39
  name_base, _ = os.path.splitext(os.path.basename(path_input))
40
  d_save_path = os.path.join("files/output", f"{name_base}_d.mp4")
41
- imageio.mimsave(d_save_path, frames_d, fps=fps)
42
  return d_save_path
43
 
44
  def run_demo_server():
 
8
  import numpy as np
9
  import spaces
10
  import torch as torch
11
+ from PIL import Image, ImageFilter
12
  from tqdm import tqdm
13
  from pathlib import Path
14
  import gradio
 
23
  if "HF_TOKEN_LOGIN" in os.environ:
24
  login(token=os.environ["HF_TOKEN_LOGIN"])
25
 
26
+ def apply_gaussian_blur(image, radius=0.75):
27
+ """Apply Gaussian blur to PIL Image with specified radius"""
28
+ return image.filter(ImageFilter.GaussianBlur(radius=radius))
29
+
30
  def infer(path_input, seed=None):
31
  name_base, name_ext = os.path.splitext(os.path.basename(path_input))
32
  _, output_d = lotus(path_input, 'depth', seed, device)
33
+
34
+ # Apply Gaussian blur with 0.75 radius
35
+ output_d = apply_gaussian_blur(output_d, radius=0.75)
36
+
37
  if not os.path.exists("files/output"):
38
  os.makedirs("files/output")
39
  d_save_path = os.path.join("files/output", f"{name_base}_d{name_ext}")
 
42
 
43
  def infer_video(path_input, seed=None):
44
  _, frames_d, fps = lotus_video(path_input, 'depth', seed, device)
45
+
46
+ # Apply Gaussian blur to each frame
47
+ blurred_frames = []
48
+ for frame in frames_d:
49
+ # Convert numpy array to PIL Image if needed
50
+ if isinstance(frame, np.ndarray):
51
+ frame_pil = Image.fromarray(frame)
52
+ else:
53
+ frame_pil = frame
54
+
55
+ # Apply blur and convert back to numpy array
56
+ blurred_frame = apply_gaussian_blur(frame_pil, radius=0.75)
57
+ blurred_frames.append(np.array(blurred_frame))
58
+
59
  if not os.path.exists("files/output"):
60
  os.makedirs("files/output")
61
  name_base, _ = os.path.splitext(os.path.basename(path_input))
62
  d_save_path = os.path.join("files/output", f"{name_base}_d.mp4")
63
+ imageio.mimsave(d_save_path, blurred_frames, fps=fps)
64
  return d_save_path
65
 
66
  def run_demo_server():