Spaces:
Runtime error
Runtime error
Commit
·
b8c299e
1
Parent(s):
fbc26e7
added LoadImageD from osail-utils
Browse files- app.py +4 -92
- io_utils.py +121 -0
app.py
CHANGED
|
@@ -9,6 +9,8 @@ from mediffusion import DiffusionModule
|
|
| 9 |
import monai as mn
|
| 10 |
import torch
|
| 11 |
|
|
|
|
|
|
|
| 12 |
# Loading the model for inference
|
| 13 |
|
| 14 |
model = DiffusionModule("./diffusion_configs.yaml")
|
|
@@ -25,22 +27,6 @@ BASELINE_NOISE = torch.randn(1, 1, 256, 256).half()
|
|
| 25 |
|
| 26 |
# Model helper functions
|
| 27 |
|
| 28 |
-
class LoadImageD(mn.transforms.Transform):
|
| 29 |
-
def __init__(self, keys, transpose=False, normalize=False):
|
| 30 |
-
self.keys = keys
|
| 31 |
-
self.transpose = transpose
|
| 32 |
-
self.normalize = normalize
|
| 33 |
-
def __call__(self, data):
|
| 34 |
-
for key in self.keys:
|
| 35 |
-
img = skimage.io.imread(data[key])
|
| 36 |
-
if self.transpose:
|
| 37 |
-
img = img.transpose(0, 1)
|
| 38 |
-
if self.normalize:
|
| 39 |
-
img -= img.min()
|
| 40 |
-
img /= (img.max()+1e-6)
|
| 41 |
-
data[key] = img
|
| 42 |
-
return data
|
| 43 |
-
|
| 44 |
def create_ds(img_paths):
|
| 45 |
if type(img_paths) == str:
|
| 46 |
img_paths = [img_paths]
|
|
@@ -125,58 +111,15 @@ def rotate_btn_fn(img_path, xt, yt, zt, add_bone_cmap=False):
|
|
| 125 |
out_img = (out_img[..., :3] * 255).astype(np.uint8)
|
| 126 |
current_img = out_img
|
| 127 |
return out_img
|
| 128 |
-
|
| 129 |
-
def rotate_to_standard_btn_fn(img_path, add_bone_cmap=False):
|
| 130 |
-
|
| 131 |
-
global current_img
|
| 132 |
-
|
| 133 |
-
out_img = make_predictions(img_path, rotate_to_standard=True)[0]
|
| 134 |
-
if not add_bone_cmap:
|
| 135 |
-
return out_img
|
| 136 |
-
cmap = plt.get_cmap('bone')
|
| 137 |
-
out_img = cmap(out_img)
|
| 138 |
-
out_img = (out_img[..., :3] * 255).astype(np.uint8)
|
| 139 |
-
current_img = out_img
|
| 140 |
-
return out_img
|
| 141 |
|
| 142 |
def use_current_btn_fn(input_img):
|
| 143 |
return input_img
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
def make_live_btn_fn(img_path, axis, add_bone_cmap=False):
|
| 147 |
-
|
| 148 |
-
global live_preds
|
| 149 |
-
|
| 150 |
-
base_angles = list(range(-20, 21, 1))
|
| 151 |
-
base_angles = [float(i) for i in base_angles]
|
| 152 |
-
if axis.lower() == "axis x":
|
| 153 |
-
all_angles = [[i, 0, 0] for i in base_angles]
|
| 154 |
-
elif axis.lower() == "axis y":
|
| 155 |
-
all_angles = [[0, i, 0] for i in base_angles]
|
| 156 |
-
elif axis.lower() == "axis z":
|
| 157 |
-
all_angles = [[0, 0, i] for i in base_angles]
|
| 158 |
-
fp = torch.zeros(768)
|
| 159 |
-
cls_batch = torch.tensor([[1, *angles, *fp] for angles in all_angles])
|
| 160 |
-
|
| 161 |
-
live_preds = make_predictions(img_path, cls_batch=cls_batch)
|
| 162 |
-
live_preds = {angle: live_preds[i] for i, angle in enumerate(base_angles)}
|
| 163 |
-
return img_path
|
| 164 |
-
|
| 165 |
-
def rotate_live_img_fn(angle, add_bone_cmap=False):
|
| 166 |
-
|
| 167 |
-
global live_img
|
| 168 |
-
global live_preds
|
| 169 |
-
|
| 170 |
-
if live_img is not None:
|
| 171 |
-
if angle == 0:
|
| 172 |
-
return live_img
|
| 173 |
-
return live_preds[float(angle)]
|
| 174 |
|
| 175 |
css_style = "./style.css"
|
| 176 |
callback = gr.CSVLogger()
|
| 177 |
with gr.Blocks(css=css_style) as app:
|
| 178 |
-
gr.HTML("VCNet: A
|
| 179 |
-
gr.HTML("Developed by
|
| 180 |
gr.HTML("Note: This is a proof-of-concept demo of an AI tool that is not yet finalized. Please interpret with care!", elem_classes="note")
|
| 181 |
|
| 182 |
with gr.TabItem("Single Rotation"):
|
|
@@ -207,41 +150,10 @@ with gr.Blocks(css=css_style) as app:
|
|
| 207 |
zt = gr.Slider(label='Rotation angle in z axis:', elem_classes='angle', value=0, minimum=-20, maximum=20, step=1)
|
| 208 |
with gr.Row():
|
| 209 |
rotate_btn = gr.Button("Rotate!", elem_classes='rotate_button')
|
| 210 |
-
with gr.Row():
|
| 211 |
-
rotate_to_standard_btn = gr.Button("Rotate to standard view!", elem_classes='rotate_to_standard_button')
|
| 212 |
with gr.Row():
|
| 213 |
use_current_btn = gr.Button("Use the current output as the new input!", elem_classes='use_current_button')
|
| 214 |
rotate_btn.click(fn=rotate_btn_fn, inputs=[input_img, xt, yt, zt], outputs=output_img)
|
| 215 |
-
rotate_to_standard_btn.click(fn=rotate_to_standard_btn_fn, inputs=[input_img], outputs=output_img)
|
| 216 |
use_current_btn.click(fn=use_current_btn_fn, inputs=[output_img], outputs=input_img)
|
| 217 |
-
|
| 218 |
-
with gr.TabItem("Live Rotation"):
|
| 219 |
-
with gr.Row():
|
| 220 |
-
live_img = gr.Image(type='filepath', label='Live Image', sources='upload', interactive=False, elem_classes='imgs')
|
| 221 |
-
with gr.Row():
|
| 222 |
-
gr.Examples(
|
| 223 |
-
examples = [os.path.join("./data/examples", f) for f in os.listdir("./data/examples") if "xr" in f],
|
| 224 |
-
inputs = [live_img],
|
| 225 |
-
label = "Xray Examples",
|
| 226 |
-
elem_id='examples'
|
| 227 |
-
)
|
| 228 |
-
gr.Examples(
|
| 229 |
-
examples = [os.path.join("./data/examples", f) for f in os.listdir("./data/examples") if "drr" in f],
|
| 230 |
-
inputs = [live_img],
|
| 231 |
-
label = "DRR Examples",
|
| 232 |
-
elem_id='examples'
|
| 233 |
-
)
|
| 234 |
-
with gr.Row():
|
| 235 |
-
gr.Markdown('Please select an example image, an axis, and then press Make Live!', elem_classes='text')
|
| 236 |
-
with gr.Row():
|
| 237 |
-
axis = gr.Dropdown(choices=['Axis X', 'Axis Y', 'Axis Z'], show_label=False, elem_classes='angle', value='Axis X')
|
| 238 |
-
live_btn = gr.Button("Make Live!", elem_classes='make_live_button')
|
| 239 |
-
with gr.Row():
|
| 240 |
-
gr.Markdown('You can now rotate the radiograph in your selected axis using the scaler.', elem_classes='text')
|
| 241 |
-
with gr.Row():
|
| 242 |
-
slider = gr.Slider(show_label=False, minimum=-20, maximum=20, step=1, value=0, elem_classes='slider', interactive=True)
|
| 243 |
-
live_btn.click(fn=make_live_btn_fn, inputs=[live_img, axis], outputs=live_img)
|
| 244 |
-
slider.change(fn=rotate_live_img_fn, inputs=[slider], outputs=live_img)
|
| 245 |
|
| 246 |
try:
|
| 247 |
app.close()
|
|
|
|
| 9 |
import monai as mn
|
| 10 |
import torch
|
| 11 |
|
| 12 |
+
from io_utils import LoadImageD
|
| 13 |
+
|
| 14 |
# Loading the model for inference
|
| 15 |
|
| 16 |
model = DiffusionModule("./diffusion_configs.yaml")
|
|
|
|
| 27 |
|
| 28 |
# Model helper functions
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
def create_ds(img_paths):
|
| 31 |
if type(img_paths) == str:
|
| 32 |
img_paths = [img_paths]
|
|
|
|
| 111 |
out_img = (out_img[..., :3] * 255).astype(np.uint8)
|
| 112 |
current_img = out_img
|
| 113 |
return out_img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
def use_current_btn_fn(input_img):
|
| 116 |
return input_img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
css_style = "./style.css"
|
| 119 |
callback = gr.CSVLogger()
|
| 120 |
with gr.Blocks(css=css_style) as app:
|
| 121 |
+
gr.HTML("VCNet: A tool for 3D Rotation of Radiographs with Diffusion Models", elem_classes="title")
|
| 122 |
+
gr.HTML("Developed by: Pouria Rouzrokh, Bardia Khosravi, Shahriar Faghani, Kellen Mulford, Michael J. Taunton, Bradley J. Erickson, Cody C. Wyles", elem_classes="note")
|
| 123 |
gr.HTML("Note: This is a proof-of-concept demo of an AI tool that is not yet finalized. Please interpret with care!", elem_classes="note")
|
| 124 |
|
| 125 |
with gr.TabItem("Single Rotation"):
|
|
|
|
| 150 |
zt = gr.Slider(label='Rotation angle in z axis:', elem_classes='angle', value=0, minimum=-20, maximum=20, step=1)
|
| 151 |
with gr.Row():
|
| 152 |
rotate_btn = gr.Button("Rotate!", elem_classes='rotate_button')
|
|
|
|
|
|
|
| 153 |
with gr.Row():
|
| 154 |
use_current_btn = gr.Button("Use the current output as the new input!", elem_classes='use_current_button')
|
| 155 |
rotate_btn.click(fn=rotate_btn_fn, inputs=[input_img, xt, yt, zt], outputs=output_img)
|
|
|
|
| 156 |
use_current_btn.click(fn=use_current_btn_fn, inputs=[output_img], outputs=input_img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
try:
|
| 159 |
app.close()
|
io_utils.py
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
################################################################################
|
| 2 |
+
# This files contains OSAIL utils to read and write files.
|
| 3 |
+
################################################################################
|
| 4 |
+
|
| 5 |
+
from .data import pad_to_square
|
| 6 |
+
import copy
|
| 7 |
+
import monai as mn
|
| 8 |
+
import numpy as np
|
| 9 |
+
import os
|
| 10 |
+
import skimage
|
| 11 |
+
|
| 12 |
+
################################################################################
|
| 13 |
+
# -F: load_image
|
| 14 |
+
|
| 15 |
+
def load_image(input_object, pad=False, normalize=True, standardize=False,
|
| 16 |
+
dtype=np.float32, percentile_clip=None, target_shape=None,
|
| 17 |
+
transpose=False, ensure_grayscale=True, LoadImage_args=[], LoadImage_kwargs={}):
|
| 18 |
+
"""A helper function to load different input types.
|
| 19 |
+
|
| 20 |
+
Args:
|
| 21 |
+
input_object (Union[np.ndarray, str]):
|
| 22 |
+
a 2D NumPy array of X-ray an image, a DICOM file of an X-ray image,
|
| 23 |
+
or a string path to a .npy, any regular image file format
|
| 24 |
+
saved on disk that skimage.io can load.
|
| 25 |
+
pad (bool, optional): whether to pad the image to square shape.
|
| 26 |
+
Defaults to True.
|
| 27 |
+
normalize (bool, optional): whether to normalize the image.
|
| 28 |
+
Defaults to True.
|
| 29 |
+
standardize (bool, optional): whether to standardize the image.
|
| 30 |
+
Defaults to False.
|
| 31 |
+
dtype (np.dtype, optional): the data type of the output image.
|
| 32 |
+
Defaults to np.float32.
|
| 33 |
+
percentile_clip (float, optional): the percentile to clip the image.
|
| 34 |
+
Defaults to 2.5.
|
| 35 |
+
target_shape (tuple, optional): the target shape of the output image.
|
| 36 |
+
Defaults to None, which means no resizing.
|
| 37 |
+
transpose (bool, optional): whether to transpose the image.
|
| 38 |
+
Defaults to False.
|
| 39 |
+
ensure_grayscale (bool, optional): whether to make the image grayscale.
|
| 40 |
+
Defaults to True.
|
| 41 |
+
LoadImg_args: a list of keyword arguments to pass to mn.transforms.LoadImage.
|
| 42 |
+
LoadImg_kwargs: a dictionary of keyword arguments to pass to mn.transforms.LoadImage.
|
| 43 |
+
|
| 44 |
+
Returns:
|
| 45 |
+
the loaded image array.
|
| 46 |
+
"""
|
| 47 |
+
# Load the image.
|
| 48 |
+
if isinstance(input_object, np.ndarray):
|
| 49 |
+
image = input_object
|
| 50 |
+
elif isinstance(input_object, str):
|
| 51 |
+
assert os.path.exists(input_object), f"File not found: {input_object}"
|
| 52 |
+
reader = mn.transforms.LoadImage(image_only=True, *LoadImage_args, **LoadImage_kwargs)
|
| 53 |
+
image = reader(input_object)
|
| 54 |
+
|
| 55 |
+
# Make the image 2D.
|
| 56 |
+
if ensure_grayscale:
|
| 57 |
+
if image.shape[-1] == 3:
|
| 58 |
+
image = np.mean(image, axis=-1)
|
| 59 |
+
elif image.shape[0] == 3:
|
| 60 |
+
image = np.mean(image, axis=0)
|
| 61 |
+
elif image.shape[-1] == 4:
|
| 62 |
+
image = np.mean(image[...,:3], axis=-1)
|
| 63 |
+
elif image.shape[0] == 4:
|
| 64 |
+
image = np.mean(image[:3,...], axis=0)
|
| 65 |
+
assert len(image.shape) == 2, f"Image must be 2D: {image.shape}"
|
| 66 |
+
|
| 67 |
+
# Transpose the image.
|
| 68 |
+
if transpose:
|
| 69 |
+
image = np.transpose(image, axes=(1,0))
|
| 70 |
+
|
| 71 |
+
# Clip the image.
|
| 72 |
+
if percentile_clip is not None:
|
| 73 |
+
percentile_low = np.percentile(image, percentile_clip)
|
| 74 |
+
percentile_high = np.percentile(image, 100-percentile_clip)
|
| 75 |
+
image = np.clip(image, percentile_low, percentile_high)
|
| 76 |
+
|
| 77 |
+
# Standardize the image.
|
| 78 |
+
if standardize:
|
| 79 |
+
image = image.astype(np.float32)
|
| 80 |
+
image -= image.mean()
|
| 81 |
+
image /= (image.std() + 1e-8)
|
| 82 |
+
|
| 83 |
+
# Normalize the image.
|
| 84 |
+
if normalize:
|
| 85 |
+
image = image.astype(np.float32)
|
| 86 |
+
image -= image.min()
|
| 87 |
+
image /= (image.max() + 1e-8)
|
| 88 |
+
|
| 89 |
+
# Pad the image to square shape.
|
| 90 |
+
if pad:
|
| 91 |
+
image = pad_to_square(image)
|
| 92 |
+
|
| 93 |
+
# Resize the image.
|
| 94 |
+
if target_shape is not None:
|
| 95 |
+
image = skimage.transform.resize(image, target_shape, preserve_range=True)
|
| 96 |
+
|
| 97 |
+
# Cast the image to the target data type.
|
| 98 |
+
if dtype is np.uint8:
|
| 99 |
+
image = (image * 255).astype(np.uint8)
|
| 100 |
+
else:
|
| 101 |
+
image = image.astype(dtype)
|
| 102 |
+
|
| 103 |
+
return image
|
| 104 |
+
|
| 105 |
+
################################################################################
|
| 106 |
+
# -C: LoadImageD
|
| 107 |
+
|
| 108 |
+
class LoadImageD(mn.transforms.Transform):
|
| 109 |
+
"""A MONAI transform to load input image using load_image function.
|
| 110 |
+
"""
|
| 111 |
+
def __init__(self, keys, *to_pass_keys, **to_pass_kwargs) -> None:
|
| 112 |
+
super().__init__()
|
| 113 |
+
self.keys = keys
|
| 114 |
+
self.to_pass_keys = to_pass_keys
|
| 115 |
+
self.to_pass_kwargs = to_pass_kwargs
|
| 116 |
+
|
| 117 |
+
def __call__(self, data):
|
| 118 |
+
data_copy = copy.deepcopy(data)
|
| 119 |
+
for key in self.keys:
|
| 120 |
+
data_copy[key] = load_image(data[key], *self.to_pass_keys, **self.to_pass_kwargs)
|
| 121 |
+
return data_copy
|