File size: 23,660 Bytes
07b3a05
 
9da2a2c
07b3a05
9da2a2c
07b3a05
 
 
9da2a2c
07b3a05
 
9da2a2c
07b3a05
 
9da2a2c
07b3a05
 
 
 
 
 
 
9da2a2c
07b3a05
 
9da2a2c
 
 
 
 
 
07b3a05
 
 
9da2a2c
07b3a05
 
9da2a2c
07b3a05
9da2a2c
07b3a05
 
 
 
9da2a2c
07b3a05
 
9da2a2c
07b3a05
 
 
 
 
 
 
9da2a2c
07b3a05
 
 
 
 
 
9da2a2c
07b3a05
 
9da2a2c
07b3a05
9da2a2c
07b3a05
9da2a2c
07b3a05
 
9da2a2c
07b3a05
9da2a2c
07b3a05
9da2a2c
07b3a05
 
9da2a2c
07b3a05
 
 
 
 
9da2a2c
07b3a05
 
9da2a2c
07b3a05
9da2a2c
07b3a05
 
9da2a2c
07b3a05
9da2a2c
07b3a05
9da2a2c
07b3a05
9da2a2c
07b3a05
9da2a2c
07b3a05
9da2a2c
07b3a05
9da2a2c
07b3a05
 
 
9da2a2c
07b3a05
9da2a2c
07b3a05
 
 
9da2a2c
07b3a05
 
9da2a2c
07b3a05
 
9da2a2c
 
07b3a05
 
9da2a2c
 
07b3a05
 
 
 
9da2a2c
07b3a05
9da2a2c
07b3a05
 
 
9da2a2c
07b3a05
9da2a2c
07b3a05
 
9da2a2c
07b3a05
 
 
 
9da2a2c
07b3a05
 
 
9da2a2c
07b3a05
9da2a2c
07b3a05
 
9da2a2c
07b3a05
 
9da2a2c
07b3a05
 
9da2a2c
07b3a05
 
9da2a2c
07b3a05
9da2a2c
07b3a05
 
9da2a2c
07b3a05
9da2a2c
07b3a05
 
9da2a2c
07b3a05
9da2a2c
07b3a05
 
9da2a2c
07b3a05
9da2a2c
07b3a05
 
 
 
9da2a2c
07b3a05
 
 
 
9da2a2c
07b3a05
 
 
 
9da2a2c
07b3a05
 
 
9da2a2c
07b3a05
 
 
 
 
 
 
 
 
9da2a2c
07b3a05
 
 
9da2a2c
07b3a05
9da2a2c
07b3a05
9da2a2c
07b3a05
 
 
 
9da2a2c
07b3a05
 
 
 
 
 
9da2a2c
07b3a05
9da2a2c
07b3a05
 
 
 
9da2a2c
07b3a05
 
9da2a2c
 
07b3a05
9da2a2c
07b3a05
 
9da2a2c
 
07b3a05
 
9da2a2c
07b3a05
 
 
9da2a2c
07b3a05
9da2a2c
07b3a05
9da2a2c
07b3a05
9da2a2c
07b3a05
 
9da2a2c
07b3a05
9da2a2c
07b3a05
9da2a2c
07b3a05
 
9da2a2c
07b3a05
 
9da2a2c
 
07b3a05
 
9da2a2c
 
07b3a05
9da2a2c
 
07b3a05
 
9da2a2c
07b3a05
 
 
9da2a2c
07b3a05
9da2a2c
07b3a05
 
 
 
 
9da2a2c
07b3a05
 
9da2a2c
07b3a05
 
9da2a2c
07b3a05
 
 
 
 
 
 
9da2a2c
07b3a05
 
9da2a2c
07b3a05
9da2a2c
07b3a05
9da2a2c
07b3a05
 
 
 
 
 
 
 
 
9da2a2c
 
07b3a05
 
9da2a2c
 
07b3a05
 
 
 
 
9da2a2c
07b3a05
 
9da2a2c
07b3a05
 
 
9da2a2c
07b3a05
 
9da2a2c
07b3a05
 
 
 
 
 
9da2a2c
07b3a05
 
 
 
 
 
 
 
 
 
9da2a2c
07b3a05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9da2a2c
07b3a05
9da2a2c
07b3a05
9da2a2c
07b3a05
 
9da2a2c
07b3a05
9da2a2c
07b3a05
9da2a2c
07b3a05
9da2a2c
07b3a05
9da2a2c
07b3a05
 
9da2a2c
07b3a05
 
 
9da2a2c
07b3a05
9da2a2c
07b3a05
 
9da2a2c
07b3a05
9da2a2c
07b3a05
 
9da2a2c
07b3a05
 
9da2a2c
07b3a05
9da2a2c
07b3a05
 
 
 
 
 
 
9da2a2c
07b3a05
 
 
 
 
 
 
 
9da2a2c
07b3a05
 
 
 
9da2a2c
07b3a05
 
9da2a2c
07b3a05
9da2a2c
07b3a05
 
9da2a2c
07b3a05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9da2a2c
07b3a05
 
 
9da2a2c
07b3a05
9da2a2c
07b3a05
 
9da2a2c
07b3a05
 
9da2a2c
07b3a05
9da2a2c
07b3a05
9da2a2c
07b3a05
 
 
 
 
 
 
9da2a2c
07b3a05
 
 
 
 
 
 
 
 
 
 
 
9da2a2c
 
07b3a05
 
9da2a2c
07b3a05
 
 
9da2a2c
07b3a05
 
 
 
 
 
 
 
 
 
 
 
 
 
9da2a2c
07b3a05
 
 
9da2a2c
07b3a05
 
 
 
 
 
9da2a2c
07b3a05
 
 
9da2a2c
07b3a05
9da2a2c
07b3a05
 
9da2a2c
07b3a05
 
9da2a2c
07b3a05
 
9da2a2c
07b3a05
 
 
 
 
 
 
9da2a2c
07b3a05
 
 
 
 
9da2a2c
07b3a05
 
 
 
9da2a2c
07b3a05
 
 
9da2a2c
07b3a05
9da2a2c
07b3a05
 
 
 
9da2a2c
07b3a05
 
 
 
 
 
9da2a2c
07b3a05
 
 
 
9da2a2c
07b3a05
9da2a2c
07b3a05
 
 
 
 
9da2a2c
07b3a05
9da2a2c
07b3a05
9da2a2c
07b3a05
 
9da2a2c
07b3a05
9da2a2c
07b3a05
 
 
 
 
 
9da2a2c
07b3a05
9da2a2c
07b3a05
 
 
9da2a2c
 
07b3a05
 
9da2a2c
07b3a05
 
 
9da2a2c
07b3a05
9da2a2c
07b3a05
9da2a2c
 
07b3a05
 
 
 
 
 
 
9da2a2c
 
07b3a05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
# # -*- coding: utf-8 -*-
# """ML Engineer Assignment: Bangladeshi Bangla TTS Finetuning.ipynb

# Automatically generated by Colab.

# Original file is located at
#     https://colab.research.google.com/drive/12ZrU_dlECt3YzVZ7k7qpwySH3eXUS7bj
# """

import gradio as gr
from inference import run_tts   

def text_to_speech(text):
    return run_tts(text)

demo = gr.Interface(
    fn=text_to_speech,
    inputs="text",
    outputs="audio",
    title="Bangla Text to Speech",
    description="Enter Bangla text and hear the generated audio."
)

if __name__ == "__main__":
    demo.launch()






# # pip install transformers datasets torch torchaudio librosa
# # pip install coqui-tts phonemizer espeak-ng
# # pip install wandb tensorboard matplotlib seaborn

# # git lfs install
# git clone https://huggingface.co/bangla-speech-processing/bangla_tts_female

# ls bangla_tts_female

# tts --model_path bangla_tts_female/pytorch_model.pth \
#      --config_path bangla_tts_female/config.json \
#      --text "আমি বাংলাদেশ থেকে এসেছি।" \
#      --out_path baseline.wav

# from IPython.display import Audio
# Audio("baseline.wav")

# sentences = [
#     "আমি বাংলাদেশ থেকে এসেছি।",
#     "আজকের আবহাওয়া সুন্দর।",
#     "তুমি কোথায় যাচ্ছ?",
#     "আমরা ঢাকায় থাকি।",
#     "এটা আমার প্রিয় বই।"
# ]

# for i, text in enumerate(sentences, 1):
#     safe_text = text.replace('"', '\\"')
#     tts --model_path bangla_tts_female/pytorch_model.pth \
#          --config_path bangla_tts_female/config.json \
#          --text "{safe_text}" \
#          --out_path "baseline_{i}.wav"

# from IPython.display import Audio
# Audio("baseline_2.wav")

# """Checking the config.json"""

# import json

# with open("bangla_tts_female/config.json", "r", encoding="utf-8") as f:
#     config = json.load(f)

# print(json.dumps(config, indent=2, ensure_ascii=False))

# """Count parameters"""

# from TTS.utils.synthesizer import Synthesizer
# import torch

# synthesizer = Synthesizer(
#     tts_checkpoint="bangla_tts_female/pytorch_model.pth",
#     tts_config_path="bangla_tts_female/config.json",
#     use_cuda=torch.cuda.is_available()
# )

# model_params = sum(p.numel() for p in synthesizer.tts_model.parameters())
# print(f"Total parameters: {model_params:,}")

# """Check tokenizer / phoneme system"""

# print("Phonemizer:", config.get("phonemizer", "Not specified"))
# print("Characters:", config.get("characters", "Not specified"))

# """# Task 2"""

# !wget https://www.openslr.org/resources/53/asr_bengali_6.zip

# !unzip asr_bengali_6.zip -d openslr_53

# !find /content -type d -name "*asr_bengali*"

# !ls /content/openslr_53/asr_bengali

# import pandas as pd

# tsv_path = "/content/openslr_53/asr_bengali/utt_spk_text.tsv"
# df = pd.read_csv(tsv_path, sep="\t", header=None, names=["utt_id", "speaker_id", "text"])
# print(df.head())

# import os

# audio_dir = "/content/openslr_53/asr_bengali/data"
# df["audio_path"] = df["utt_id"].apply(lambda x: os.path.join(audio_dir, f"{x}.wav"))
# print(df.head())

# df = df[df["audio_path"].apply(os.path.exists)]
# print(f"Total usable audio files: {len(df)}")

# import os, glob
# import pandas as pd


# tsv_path = "/content/openslr_53/asr_bengali/utt_spk_text.tsv"
# df = pd.read_csv(tsv_path, sep="\t", header=None, names=["utt_id", "speaker_id", "text"])


# file_dict = {
#     os.path.splitext(os.path.basename(f))[0]: f
#     for f in glob.glob("/content/openslr_53/asr_bengali/data/**/*.flac", recursive=True)
# }

# df["audio_path"] = df["utt_id"].map(file_dict)

# df = df[df["audio_path"].notnull()]
# print(f"Usable audio files: {len(df)}")
# print(df.head())

# !find /content/openslr_53/asr_bengali/data -type f | head -20

# import librosa
# import numpy as np

# durations = []
# for path in df["audio_path"].sample(100):
#     y, sr = librosa.load(path, sr=None)
#     durations.append(len(y) / sr)

# print(f"Total samples: {len(df)}")
# print(f"Duration: min={np.min(durations):.2f}s, mean={np.mean(durations):.2f}s, max={np.max(durations):.2f}s")
# print(f"Unique speakers: {df['speaker_id'].nunique()}")

# import pandas as pd

# sample_df = df.sample(300, random_state=42)
# sample_df.to_csv("accent_labeling_sample.csv", index=False)

# from google.colab import files
# files.download("accent_labeling_sample.csv")

# from google.colab import files
# uploaded = files.upload()

# import pandas as pd
# labeled_df = pd.read_csv("accent_labeling_sample.csv")

# print(labeled_df.columns)

# sample_df = df.sample(300, random_state=42)
# sample_df.to_csv("accent_labeling_sample.csv", index=False)

# import pandas as pd

# label_df = df.sample(50, random_state=42).reset_index(drop=True)
# label_df["accent_label"] = None

# label_df.to_csv("labeling_in_progress.csv", index=False)

# from IPython.display import Audio, display
# import ipywidgets as widgets

# label_df = pd.read_csv("labeling_in_progress.csv")

# def label_clip(idx, label):
#     label_df.loc[idx, "accent_label"] = label
#     label_df.to_csv("labeling_in_progress.csv", index=False)
#     print(f"Labeled index {idx} as {'BD' if label==1 else 'IN'}")

# def play_and_label(idx):
#     if idx >= len(label_df):
#         print("✅ All clips labeled!")
#         return

#     row = label_df.iloc[idx]
#     print(f"Index: {idx} | Speaker: {row['speaker_id']}")
#     print(f"Text: {row['text']}")
#     display(Audio(row["audio_path"]))

#     bd_btn = widgets.Button(description="BD Accent (1)", button_style='success')
#     in_btn = widgets.Button(description="IN Accent (0)", button_style='danger')
#     skip_btn = widgets.Button(description="Skip", button_style='warning')

#     def on_bd(b):
#         label_clip(idx, 1)
#         play_and_label(idx+1)
#     def on_in(b):
#         label_clip(idx, 0)
#         play_and_label(idx+1)
#     def on_skip(b):
#         label_clip(idx, None)
#         play_and_label(idx+1)

#     bd_btn.on_click(on_bd)
#     in_btn.on_click(on_in)
#     skip_btn.on_click(on_skip)

#     display(widgets.HBox([bd_btn, in_btn, skip_btn]))

# play_and_label(0)

# final_labels = pd.read_csv("labeling_in_progress.csv")
# final_labels = final_labels.dropna(subset=["accent_label"])
# final_labels.to_csv("accent_labeling_sample_labeled.csv", index=False)
# print(f"Saved {len(final_labels)} labeled samples.")

# import librosa
# import numpy as np
# import pandas as pd
# from sklearn.ensemble import RandomForestClassifier
# from sklearn.model_selection import train_test_split
# from sklearn.metrics import classification_report

# labeled_df = pd.read_csv("accent_labeling_sample_labeled.csv")

# def extract_mfcc(path, n_mfcc=13):
#     y, sr = librosa.load(path, sr=22050)
#     mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=n_mfcc)
#     return np.mean(mfcc, axis=1)

# X = np.array([extract_mfcc(p) for p in labeled_df["audio_path"]])
# y = np.array(labeled_df["accent_label"])


# X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# clf = RandomForestClassifier(n_estimators=200, random_state=42)
# clf.fit(X_train, y_train)


# y_pred = clf.predict(X_test)
# print(classification_report(y_test, y_pred))

# df["accent_label"] = df["audio_path"].apply(lambda p: clf.predict([extract_mfcc(p)])[0])
# bd_df = df[df["accent_label"] == 1]
# print(f"Bangladeshi-accent samples: {len(bd_df)}")

# bd_df.to_csv("bd_openslr53.csv", index=False)

# wget https://www.openslr.org/resources/53/asr_bengali_a.zip

# unzip asr_bengali_a.zip -d asr_bengali_a

# ls asr_bengali_a
# find asr_bengali_a -type f | head -20

# find /content -type d -name "*asr_bengali*"

# ls /content/asr_bengali_a/asr_bengali

# import pandas as pd
# import glob, os

# tsv_path = "/content/asr_bengali_a/asr_bengali/utt_spk_text.tsv"
# df_a = pd.read_csv(tsv_path, sep="\t", names=["utt_id", "speaker_id", "text"])


# audio_files = glob.glob("asr_bengali_a/data/**/*.flac", recursive=True)
# audio_map = {os.path.splitext(os.path.basename(f))[0]: f for f in audio_files}


# df_a["audio_path"] = df_a["utt_id"].map(audio_map)


# df_a = df_a.dropna(subset=["audio_path"])
# print(df_a.head())

# df_a["accent_label"] = df_a["audio_path"].apply(lambda p: clf.predict([extract_mfcc(p)])[0])
# bd_df_a = df_a[df_a["accent_label"] == 1]
# print(f"Bangladeshi-accent samples: {len(bd_df_a)}")

# bd_df_a.to_csv("bd_asr_bengali_a.csv", index=False)

# final_df = pd.concat([
#     pd.read_csv("bd_openslr53.csv"),
#     pd.read_csv("bd_asr_bengali_a.csv")
# ])
# final_df.to_csv("bd_combined_dataset.csv", index=False)

# import soundfile as sf
# import os

# os.makedirs("processed_bd_audio", exist_ok=True)
# meta_lines = []

# for i, row in final_df.iterrows():
#     y, sr = librosa.load(row["audio_path"], sr=22050)
#     y, _ = librosa.effects.trim(y)
#     y = y / (np.max(np.abs(y)) + 1e-9)
#     out_path = f"processed_bd_audio/{i}.wav"
#     sf.write(out_path, y, 22050)
#     meta_lines.append(f"{out_path}|{row['text']}|bd_speaker")

# with open("metadata.csv", "w", encoding="utf-8") as f:
#     f.write("\n".join(meta_lines))

# """# TASK 3"""

# # pip install librosa soundfile scikit-learn joblib numpy tqdm

# import os
# import numpy as np
# import pandas as pd
# import librosa
# from tqdm import tqdm
# from sklearn.ensemble import RandomForestClassifier
# from sklearn.model_selection import train_test_split
# from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
# import joblib


# SR = 22050
# N_MFCC = 13


# def extract_accent_features(audio_path, sr=SR, n_mfcc=N_MFCC):
#     try:
#         y, orig_sr = librosa.load(audio_path, sr=None)
#     except:
#         return None

#     if orig_sr != sr:
#         y = librosa.resample(y=y, orig_sr=orig_sr, target_sr=sr)

#     y, _ = librosa.effects.trim(y, top_db=20)
#     if y.size == 0:
#         return None

#     y = y / (np.max(np.abs(y)) + 1e-9)
#     features = []

#     mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=n_mfcc)
#     delta = librosa.feature.delta(mfcc)
#     features += list(np.mean(mfcc, axis=1))
#     features += list(np.std(mfcc, axis=1))
#     features += list(np.mean(delta, axis=1))
#     features += list(np.std(delta, axis=1))

#     cent = librosa.feature.spectral_centroid(y=y, sr=sr)
#     bw = librosa.feature.spectral_bandwidth(y=y, sr=sr)
#     rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr)
#     zcr = librosa.feature.zero_crossing_rate(y)
#     rms = librosa.feature.rms(y=y)
#     features += [np.mean(cent), np.std(cent)]
#     features += [np.mean(bw), np.std(bw)]
#     features += [np.mean(rolloff), np.std(rolloff)]
#     features += [np.mean(zcr), np.std(zcr)]
#     features += [np.mean(rms), np.std(rms)]

#     try:
#         f0, voiced_flag, voiced_prob = librosa.pyin(y, fmin=50, fmax=600, sr=sr)
#         if f0 is None:
#             f0_stats = [0,0,0,0]
#         else:
#             voiced = ~np.isnan(f0)
#             if voiced.sum() == 0:
#                 f0_stats = [0,0,0,0]
#             else:
#                 f0_vals = f0[voiced]
#                 f0_stats = [
#                     np.mean(f0_vals),
#                     np.std(f0_vals),
#                     np.median(f0_vals),
#                     float(np.sum(voiced)) / len(f0)
#                 ]
#     except:
#         f0_stats = [0,0,0,0]
#     features += f0_stats

#     features += [len(y) / sr]

#     return np.array(features)

# labeled_df = pd.read_csv("accent_labeling_sample_labeled.csv")  # Must have: audio_path, accent_label
# X, y = [], []

# for _, row in tqdm(labeled_df.iterrows(), total=len(labeled_df)):
#     feats = extract_accent_features(row["audio_path"])
#     if feats is not None:
#         X.append(feats)
#         y.append(int(row["accent_label"]))

# X = np.vstack(X)
# y = np.array(y)

# X_train, X_test, y_train, y_test = train_test_split(
#     X, y, test_size=0.2, random_state=42
# )


# clf = RandomForestClassifier(
#     n_estimators=300, random_state=42, n_jobs=-1
# )
# clf.fit(X_train, y_train)


# y_pred = clf.predict(X_test)
# print("✅ Accuracy:", accuracy_score(y_test, y_pred))
# print(classification_report(y_test, y_pred))
# print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))

# joblib.dump(clf, "accent_rf_model.joblib")
# np.save("feature_shape.npy", X.shape[1])
# print("💾 Model saved as accent_rf_model.joblib")

# """# TASK 4"""

# from transformers import VitsModel

# class BDVitsModel(VitsModel):
#     def __init__(self, config):
#         super().__init__(config)
#         self.bd_accent_adapter = torch.nn.Linear(config.hidden_size, config.hidden_size)

#     def forward(self, input_ids, attention_mask=None, **kwargs):
#         outputs = super().forward(input_ids, attention_mask=attention_mask, **kwargs)
#         hidden_states = outputs.last_hidden_state
#         hidden_states = self.bd_accent_adapter(hidden_states)
#         return outputs

# def bd_text_normalize(text):
#     text = text.replace("ড়", "র")
#     text = text.replace("ঋ", "রি")
#     text = text.replace("ই", "ঈ") if "..." else text
#     return text

# sample_text = "ঋণী ছেলে বড় রাস্তা দিয়ে যাবে।"
# normalized_text = bd_text_normalize(sample_text)

# print("Original text:  ", sample_text)
# print("Normalized text:", normalized_text)

# def bd_accent_loss(pred_mel, target_mel, pred_phonemes, target_phonemes, accent_weight=0.1, phoneme_weight=0.5):
#     mel_loss = F.mse_loss(pred_mel, target_mel)
#     phoneme_loss = F.cross_entropy(pred_phonemes, target_phonemes)
#     accent_loss = accent_discriminator_loss(pred_mel)
#     total_loss = mel_loss + phoneme_weight * phoneme_loss + accent_weight * accent_loss

#     print(f"Mel Loss: {mel_loss.item():.4f} | Phoneme Loss: {phoneme_loss.item():.4f} | "
#           f"Accent Loss: {accent_loss:.4f} | Total Loss: {total_loss.item():.4f}")
#     return total_loss

# """# TASK 5"""

# # !pip install torch torchaudio transformers datasets librosa soundfile wandb accelerate
# # !pip install tqdm librosa

# import os, time, math, random
# import torch
# import torch.nn.functional as F
# from torch import nn, optim
# from torch.utils.data import DataLoader, Dataset
# from torch.cuda.amp import autocast, GradScaler
# import librosa, soundfile as sf, numpy as np
# from tqdm.auto import tqdm
# import joblib
# import wandb

# training_config = {
#  "learning_rate": 1e-4,
#  "batch_size": 16,
#  "warmup_steps": 1000,
#  "gradient_accumulation_steps": 4,
#  "mixed_precision": True,
#  "save_strategy": "steps",
#  "save_steps": 500,
#  "eval_steps": 100,
#  "num_train_epochs": 3,
#  "device": "cuda" if torch.cuda.is_available() else "cpu",
#  "output_dir": "/content/drive/MyDrive/bd_tts_finetune",
# }
# os.makedirs(training_config["output_dir"], exist_ok=True)

# import pandas as pd

# df = pd.read_csv("metadata.csv", sep="|", names=["audio_path", "text", "accent_label"])

# print(df.head())
# print(df.shape)

# head -n 10 metadata.csv

# df = pd.read_csv("metadata.csv", sep="|", names=["audio_path", "text"])

# df.to_csv("metadata_clean.csv", index=False)

# """# TASK 6"""

# import torch
# import numpy as np

# sample = {
#     'text_input': "আমার নাম রাজি",
#     'mel_spectrogram': torch.randn(80, 200),

#     'audio_waveform': np.random.randn(44100).astype(np.float32),

#     'phonemes': ["a", "m", "a", "r", "n", "a", "m", "r", "a", "j", "i"]
# }

# import librosa

# audio_path = "/content/processed_bd_audio/audio.wav"
# audio, sr = librosa.load(audio_path, sr=22050)

# mel_spectrogram = librosa.feature.melspectrogram(y=audio, sr=sr, n_mels=80)
# mel_spectrogram_db = librosa.power_to_db(mel_spectrogram)

# import matplotlib.pyplot as plt

# plt.figure(figsize=(10, 4))
# plt.imshow(mel_spectrogram_db, aspect='auto', origin='lower', cmap='magma')
# plt.colorbar(format='%+2.0f dB')
# plt.title('Mel Spectrogram (dB)')
# plt.xlabel('Time frames')
# plt.ylabel('Mel frequency bins')
# plt.show()

# plt.figure(figsize=(10, 4))
# plt.imshow(mel_spectrogram_db, aspect='auto', origin='lower', cmap='magma')
# plt.colorbar(format='%+2.0f dB')
# plt.title('Mel Spectrogram (dB)')
# plt.xlabel('Time frames')
# plt.ylabel('Mel frequency bins')
# plt.savefig("/content/mel_spectrogram.png")
# plt.close()

# from IPython.display import Image
# Image("/content/mel_spectrogram.png")

# import torch

# mel_tensor = torch.tensor(mel_spectrogram_db).unsqueeze(0)  # add batch dim if needed
# torch.save(mel_tensor, "/content/mel_spectrogram.pt")

# """# TASK 7"""

# import torch
# import torch.nn as nn

# class RelativePositionMultiHeadAttention(nn.Module):
#     def __init__(self, num_heads=8, k_channels=64):
#         super().__init__()
#         self.num_heads = num_heads
#         self.k_channels = k_channels
#         self.conv_k = nn.Conv1d(in_channels=k_channels * num_heads, out_channels=k_channels * num_heads, kernel_size=1)
#         self.conv_v = nn.Conv1d(in_channels=k_channels * num_heads, out_channels=k_channels * num_heads, kernel_size=1)
#         self.conv_o = nn.Conv1d(in_channels=k_channels * num_heads, out_channels=k_channels * num_heads, kernel_size=1)

#     @torch.jit.ignore
#     def attention(self, query, key, value, mask=None):
#         b = key.size(0)
#         d = key.size(1)
#         t_s = key.size(2)
#         t_t = query.size(2)

#         query = query.view(b, self.num_heads, self.k_channels, t_t).transpose(2, 3)
#         key = key.view(b, self.num_heads, self.k_channels, t_s).transpose(2, 3)
#         value = value.view(b, self.num_heads, self.k_channels, t_s).transpose(2, 3)

#         scores = torch.matmul(query, key.transpose(-2, -1)) / (self.k_channels ** 0.5)

#         if mask is not None:
#             scores = scores.masked_fill(mask == 0, float('-inf'))

#         attn = torch.softmax(scores, dim=-1)
#         out = torch.matmul(attn, value)

#         out = out.transpose(2, 3).contiguous().view(b, d, t_t)

#         return out, attn

#     def forward(self, c, attn_mask=None):
#         q = c
#         k = self.conv_k(c)
#         v = self.conv_v(c)
#         x, self.attn = self.attention(q, k, v, mask=attn_mask)
#         x = self.conv_o(x)
#         return x

# if __name__ == "__main__":
#     batch_size = 2
#     d_model = 512
#     seq_len = 50
#     num_heads = 8
#     k_channels = d_model // num_heads

#     model = RelativePositionMultiHeadAttention(num_heads=num_heads, k_channels=k_channels)

#     c = torch.randn(batch_size, d_model, seq_len)
#     output = model(c)
#     print("Output shape:", output.shape)


#     scripted_model = torch.jit.script(model)
#     print("TorchScript model compiled successfully.")

# b, d, t = 2, 512, 50
# dummy_input = torch.randn(b, d, t)
# model = RelativePositionMultiHeadAttention(num_heads=8, k_channels=d//8)

# output = model(dummy_input)
# print(output.shape)

# import torch
# import torch.nn as nn
# import gradio as gr
# import numpy as np
# import librosa

# class RelativePositionMultiHeadAttention(nn.Module):
#     def __init__(self, d_model=512, num_heads=8):
#         super().__init__()
#         self.num_heads = num_heads
#         self.k_channels = d_model // num_heads

#         self.conv_k = nn.Conv1d(d_model, d_model, kernel_size=1)
#         self.conv_v = nn.Conv1d(d_model, d_model, kernel_size=1)
#         self.conv_o = nn.Conv1d(d_model, d_model, kernel_size=1)

#     @torch.jit.ignore
#     def attention(self, query, key, value, mask=None):
#         b = key.size(0)
#         d = key.size(1)
#         t_s = key.size(2)
#         t_t = query.size(2)

#         query = query.view(b, self.num_heads, self.k_channels, t_t).transpose(2, 3)
#         key = key.view(b, self.num_heads, self.k_channels, t_s).transpose(2, 3)
#         value = value.view(b, self.num_heads, self.k_channels, t_s).transpose(2, 3)

#         scores = torch.matmul(query, key.transpose(-2, -1)) / (self.k_channels ** 0.5)

#         if mask is not None:
#             scores = scores.masked_fill(mask == 0, float('-inf'))

#         attn = torch.softmax(scores, dim=-1)
#         out = torch.matmul(attn, value)

#         out = out.transpose(2, 3).contiguous().view(b, d, t_t)
#         return out, attn

#     def forward(self, c, attn_mask=None):
#         q = c
#         k = self.conv_k(c)
#         v = self.conv_v(c)
#         x, self.attn = self.attention(q, k, v, mask=attn_mask)
#         x = self.conv_o(x)
#         return x

# def preprocess_text(text):
#     bengali_chars = "অআইঈউঊঋএঐওঔকখগঘঙচছজঝঞটঠডঢণতথদধনপফবভমযরলশষসহড়ঢ়য়ড়"
#     char_to_idx = {ch: i+1 for i, ch in enumerate(bengali_chars)}
#     tokens = [char_to_idx.get(ch, 0) for ch in text if ch.strip() != '']
#     return tokens

# class TokenEmbedding(nn.Module):
#     def __init__(self, vocab_size, d_model):
#         super().__init__()
#         self.embedding = nn.Embedding(vocab_size + 1, d_model, padding_idx=0)

#     def forward(self, tokens):
#         embedded = self.embedding(tokens)
#         return embedded.transpose(1, 2)

# def mel_to_audio(mel_spectrogram, n_iter=60, sr=22050, n_fft=1024, hop_length=256):

#     mel_power = librosa.db_to_power(mel_spectrogram)
#     S = librosa.feature.inverse.mel_to_stft(mel_power, sr=sr, n_fft=n_fft)
#     audio = librosa.griffinlim(S, n_iter=n_iter, hop_length=hop_length)
#     return audio

# d_model = 512
# vocab_size = 50
# embedding = TokenEmbedding(vocab_size=vocab_size, d_model=d_model)
# attention_model = RelativePositionMultiHeadAttention(d_model=d_model, num_heads=8)
# embedding.eval()
# attention_model.eval()

# def tts_pipeline(user_text):
#     tokens = preprocess_text(user_text)
#     if len(tokens) == 0:
#         return None

#     input_tensor = torch.tensor(tokens).unsqueeze(0)

#     with torch.no_grad():
#         embedded = embedding(input_tensor)
#         output = attention_model(embedded)
#     mel = output.squeeze(0).cpu().numpy()
#     mel = mel[:80, :]

#     mel_db = 20 * np.log10(np.maximum(mel, 1e-5))

#     audio = mel_to_audio(mel_db)

#     return (22050, audio.astype(np.float32))
# import numpy as np

# import gradio as gr

# iface = gr.Interface(
#     fn=tts_pipeline,
#     inputs=gr.Textbox(label="Enter Bengali Text"),
#     outputs=gr.Audio(label="Generated Speech"),
#     title="Bangladeshi Bengali TTS Demo"
# )

# iface.launch()

# import subprocess
# import os
# import gradio as gr


# MODEL_PATH = "bangla_tts_female/pytorch_model.pth"
# CONFIG_PATH = "bangla_tts_female/config.json"

# def tts_from_cli(text):
#     if not text.strip():
#         return None

#     safe_text = text.replace('"', '\\"')

#     output_wav = "output.wav"


#     cmd = [
#         "tts",
#         "--model_path", MODEL_PATH,
#         "--config_path", CONFIG_PATH,
#         "--text", safe_text,
#         "--out_path", output_wav
#     ]


#     result = subprocess.run(cmd, capture_output=True, text=True)

#     if result.returncode != 0:
#         print("Error:", result.stderr)
#         return None

#     if os.path.exists(output_wav):
#         return output_wav
#     else:
#         print("Output audio not found")
#         return None


# iface = gr.Interface(
#     fn=tts_from_cli,
#     inputs=gr.Textbox(lines=2, placeholder="Enter Bengali text here..."),
#     outputs=gr.Audio(type="filepath"),
#     title="Bengali TTS with CLI Model"
# )

# iface.launch()