import numpy as np import os from torch.utils.data import Dataset, DataLoader from PIL import Image from scipy.ndimage import gaussian_filter class TOFDSR_Dataset(Dataset): def __init__(self, root_dir="./dataset/", scale=4, downsample='real', train=True, txt_file='./TOFDSR_Train.txt' , transform=None, isNoisy=False, blur_sigma=1.2): self.root_dir = root_dir self.transform = transform self.scale = scale self.downsample = downsample self.train = train self.isNoisy = isNoisy self.blur_sigma = blur_sigma self.image_list = txt_file with open(self.image_list, 'r') as f: self.filename = f.readlines() def __len__(self): return len(self.filename) def __getitem__(self, idx): sample_path = self.filename[idx].strip('\n') sample_path_ = sample_path.split(',') rgb_path = sample_path_[0] gt_path = sample_path_[1] lr_path = sample_path_[2] name = gt_path[20:-4] rgb_path = os.path.join(self.root_dir, rgb_path) gt_path = os.path.join(self.root_dir, gt_path) lr_path = os.path.join(self.root_dir, lr_path) if self.downsample == 'real': image = np.array(Image.open(rgb_path).convert("RGB")).astype(np.float32) gt = np.array(Image.open(gt_path)).astype(np.float32) h, w = gt.shape lr = np.array(Image.open(lr_path).resize((w, h), Image.BICUBIC)).astype(np.float32) else: image = np.array(Image.open(rgb_path).convert("RGB")).astype(np.float32) gt = Image.open(gt_path) w, h = gt.size lr = np.array(gt.resize((w, h), Image.BICUBIC)).astype(np.float32) gt = np.array(gt).astype(np.float32) image_max = np.max(image) image_min = np.min(image) image = (image - image_min) / (image_max - image_min) # normalization if self.train: max_out = 5000.0 min_out = 0.0 lr = (lr - min_out) / (max_out - min_out) gt = (gt-min_out)/(max_out-min_out) else: max_out = 5000.0 min_out = 0.0 lr = (lr - min_out) / (max_out - min_out) lr_minn = np.min(lr) lr_maxx = np.max(lr) if not self.train: np.random.seed(42) if self.isNoisy: lr = gaussian_filter(lr, sigma=self.blur_sigma) gaussian_noise = np.random.normal(0, 0.07, lr.shape) lr = lr + gaussian_noise lr = np.clip(lr, lr_minn, lr_maxx) if self.transform: image = self.transform(image).float() gt = self.transform(np.expand_dims(gt, 2)).float() lr = self.transform(np.expand_dims(lr, 2)).float() sample = {'guidance': image, 'lr': lr, 'gt': gt, 'max': max_out, 'min': min_out,'name': name} return sample