cps-api-tx / api /routes /txagent.py
Ali2206's picture
device token
bd7030e
raw
history blame
32 kB
from fastapi import APIRouter, Depends, HTTPException, UploadFile, File, Form, Query, Path, WebSocket, WebSocketDisconnect
from fastapi.responses import JSONResponse, FileResponse, StreamingResponse
from fastapi.encoders import jsonable_encoder
from typing import Optional, List
from pydantic import BaseModel
from core.security import get_current_user
import sys
import os
import re
import io
import asyncio
import logging
import base64
import tempfile
import subprocess
from datetime import datetime
from bson import ObjectId
from bson.errors import InvalidId
from pathlib import Path as PathLib
# Add the parent directory to the path to import utils
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
# Configure Hugging Face cache directory to avoid permission issues
import os
if not os.getenv('HF_HOME'):
os.environ['HF_HOME'] = '/tmp/huggingface_cache'
if not os.getenv('TRANSFORMERS_CACHE'):
os.environ['TRANSFORMERS_CACHE'] = '/tmp/huggingface_cache'
if not os.getenv('HF_DATASETS_CACHE'):
os.environ['HF_DATASETS_CACHE'] = '/tmp/huggingface_cache'
# Create cache directory if it doesn't exist
os.makedirs('/tmp/huggingface_cache', exist_ok=True)
# Import TxAgent
try:
sys.path.append('/app/src')
from src.txagent import TxAgent
TXAGENT_AVAILABLE = True
except ImportError as e:
logging.warning(f"TxAgent not available: {e}")
TXAGENT_AVAILABLE = False
try:
from utils import clean_text_response
except ImportError:
# Fallback: define the function locally if import fails
def clean_text_response(text: str) -> str:
import re
text = re.sub(r'\n\s*\n', '\n\n', text)
text = re.sub(r'[ ]+', ' ', text)
return text.replace("**", "").replace("__", "").strip()
try:
from analysis import analyze_patient_report
except ImportError:
# Fallback: define a mock function if import fails
def analyze_patient_report(patient_data):
return {"analysis": "Mock analysis", "status": "success"}
try:
from voice import recognize_speech, text_to_speech, extract_text_from_pdf
except ImportError:
# Fallback: define mock functions if import fails
def recognize_speech(audio_data):
return {"transcription": "Mock transcription"}
def text_to_speech(text, language="en-US"):
return b"Mock audio data"
def extract_text_from_pdf(pdf_data):
return "Mock PDF text"
try:
from docx import Document
except ImportError:
Document = None
logger = logging.getLogger(__name__)
# Initialize TxAgent instance
txagent_instance = None
def _normalize_risk_level(risk_level):
"""Normalize risk level names to match expected format"""
risk_level_mapping = {
'low': 'low',
'medium': 'moderate',
'moderate': 'moderate',
'high': 'high',
'severe': 'severe',
'critical': 'severe',
'none': 'none',
'unknown': 'none'
}
return risk_level_mapping.get(risk_level.lower(), 'none')
def get_txagent():
"""Get or create TxAgent instance"""
global txagent_instance
if txagent_instance is None and TXAGENT_AVAILABLE:
try:
# Try to use a more accessible model first
model_name = "microsoft/DialoGPT-medium" # Fallback model
rag_model_name = "sentence-transformers/all-MiniLM-L6-v2" # Fallback RAG model
# Try to use the original models if possible
try:
# Test if we can access the original models
import torch
from transformers import AutoTokenizer
test_tokenizer = AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B", trust_remote_code=True)
model_name = "mims-harvard/TxAgent-T1-Llama-3.1-8B"
rag_model_name = "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B"
logger.info("✅ Original TxAgent models are accessible")
except Exception as model_error:
logger.warning(f"⚠️ Original models not accessible, using fallback: {model_error}")
# Initialize TxAgent with available models
txagent_instance = TxAgent(
model_name=model_name,
rag_model_name=rag_model_name,
enable_finish=True,
enable_rag=False, # Set to True if you want RAG functionality
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=42
)
txagent_instance.init_model()
# Set the same chat prompt as the original
txagent_instance.chat_prompt = (
"You are a clinical assistant AI. Analyze the patient's data and provide clear clinical recommendations."
)
logger.info(f"✅ TxAgent initialized successfully with model: {model_name}")
except Exception as e:
logger.error(f"❌ Failed to initialize TxAgent: {e}")
txagent_instance = None
return txagent_instance
# Define the ChatRequest model with an optional patient_id
class ChatRequest(BaseModel):
message: str
history: Optional[List[dict]] = None
format: Optional[str] = "clean"
temperature: Optional[float] = 0.7
max_new_tokens: Optional[int] = 512
patient_id: Optional[str] = None
class VoiceOutputRequest(BaseModel):
text: str
language: str = "en-US"
slow: bool = False
return_format: str = "mp3"
class RiskLevel(BaseModel):
level: str
score: float
factors: Optional[List[str]] = None
router = APIRouter(prefix="/txagent", tags=["TxAgent"])
@router.get("/status")
async def status(current_user: dict = Depends(get_current_user)):
logger.info(f"Status endpoint accessed by {current_user['email']}")
return {
"status": "running",
"timestamp": datetime.utcnow().isoformat(),
"version": "2.6.0",
"features": ["chat", "voice-input", "voice-output", "patient-analysis", "report-upload", "patient-reports-pdf", "all-patients-reports-pdf"]
}
@router.get("/patients/analysis-results")
async def get_patient_analysis_results(
name: Optional[str] = Query(None),
current_user: dict = Depends(get_current_user)
):
logger.info(f"Fetching analysis results by {current_user['email']}")
try:
# Check if user has appropriate permissions
if not any(role in current_user.get('roles', []) for role in ['doctor', 'admin']):
raise HTTPException(status_code=403, detail="Only doctors and admins can access analysis results")
# Import database collections
from db.mongo import db
patients_collection = db.patients
analysis_collection = db.patient_analysis_results
query = {}
if name:
name_regex = re.compile(name, re.IGNORECASE)
matching_patients = await patients_collection.find({"full_name": name_regex}).to_list(length=None)
patient_ids = [p["fhir_id"] for p in matching_patients if "fhir_id" in p]
if not patient_ids:
return []
query = {"patient_id": {"$in": patient_ids}}
analyses = await analysis_collection.find(query).sort("timestamp", -1).to_list(length=100)
enriched_results = []
for analysis in analyses:
patient = await patients_collection.find_one({"fhir_id": analysis.get("patient_id")})
if not patient:
continue # Skip if patient no longer exists
# Format the response with proper fields matching the expected format
# Handle both old format (risk_level, risk_score) and new format (suicide_risk object)
suicide_risk_data = analysis.get("suicide_risk", {})
# Extract risk data from suicide_risk object or fallback to individual fields
if isinstance(suicide_risk_data, dict):
risk_level = suicide_risk_data.get("level", "none")
risk_score = suicide_risk_data.get("score", 0.0)
risk_factors = suicide_risk_data.get("factors", [])
else:
# Fallback to individual fields for backward compatibility
risk_level = analysis.get("risk_level", "none")
risk_score = analysis.get("risk_score", 0.0)
risk_factors = analysis.get("risk_factors", [])
formatted_analysis = {
"_id": str(analysis["_id"]),
"patient_id": analysis.get("patient_id"),
"full_name": patient.get("full_name", "Unknown"),
"timestamp": analysis.get("timestamp"),
"created_at": analysis.get("created_at"),
"analysis_date": analysis.get("analysis_date"),
"suicide_risk": {
"level": _normalize_risk_level(risk_level),
"score": risk_score,
"factors": risk_factors
},
"summary": analysis.get("summary", ""),
"recommendations": analysis.get("recommendations", [])
}
enriched_results.append(formatted_analysis)
return enriched_results
except Exception as e:
logger.error(f"Error fetching analysis results: {e}")
return []
@router.post("/patients/analyze")
async def analyze_patients(
current_user: dict = Depends(get_current_user)
):
"""Trigger analysis for all patients"""
logger.info(f"Triggering analysis for all patients by {current_user['email']}")
try:
# Check if user has appropriate permissions
if not any(role in current_user.get('roles', []) for role in ['doctor', 'admin']):
raise HTTPException(status_code=403, detail="Only doctors and admins can trigger analysis")
# Import database collections and analysis function
from db.mongo import db
from analysis import analyze_patient
patients_collection = db.patients
# Get all patients
patients = await patients_collection.find({}).to_list(length=None)
if not patients:
return {"message": "No patients found to analyze", "analyzed_count": 0}
analyzed_count = 0
for patient in patients:
try:
await analyze_patient(patient)
analyzed_count += 1
logger.info(f"✅ Analyzed patient: {patient.get('full_name', 'Unknown')}")
except Exception as e:
logger.error(f"❌ Failed to analyze patient {patient.get('full_name', 'Unknown')}: {e}")
continue
return {
"message": f"Analysis completed for {analyzed_count} patients",
"analyzed_count": analyzed_count,
"total_patients": len(patients)
}
except Exception as e:
logger.error(f"Error triggering analysis: {e}")
raise HTTPException(status_code=500, detail="Failed to trigger analysis")
@router.post("/patients/{patient_id}/analyze")
async def analyze_specific_patient(
patient_id: str,
current_user: dict = Depends(get_current_user)
):
"""Trigger analysis for a specific patient"""
logger.info(f"Triggering analysis for patient {patient_id} by {current_user['email']}")
try:
# Check if user has appropriate permissions
if not any(role in current_user.get('roles', []) for role in ['doctor', 'admin']):
raise HTTPException(status_code=403, detail="Only doctors and admins can trigger analysis")
# Import database collections and analysis function
from db.mongo import db
from analysis import analyze_patient
patients_collection = db.patients
# Find the patient
patient = await patients_collection.find_one({"fhir_id": patient_id})
if not patient:
raise HTTPException(status_code=404, detail="Patient not found")
# Analyze the patient
await analyze_patient(patient)
return {
"message": f"Analysis completed for patient {patient.get('full_name', 'Unknown')}",
"patient_id": patient_id,
"patient_name": patient.get('full_name', 'Unknown')
}
except HTTPException:
raise
except Exception as e:
logger.error(f"Error analyzing patient {patient_id}: {e}")
raise HTTPException(status_code=500, detail="Failed to analyze patient")
@router.post("/chat")
async def chat_with_txagent(
request: ChatRequest,
current_user: dict = Depends(get_current_user)
):
"""Chat avec TxAgent intégré"""
try:
# Vérifier que l'utilisateur est médecin ou admin
if not any(role in current_user.get('roles', []) for role in ['doctor', 'admin']):
raise HTTPException(status_code=403, detail="Only doctors and admins can use TxAgent")
# For now, return a simple response since the full TxAgent is not yet implemented
response = f"TxAgent integrated response: {request.message}"
return {
"status": "success",
"response": response,
"mode": "integrated"
}
except Exception as e:
logger.error(f"Error in TxAgent chat: {e}")
raise HTTPException(status_code=500, detail="Failed to process chat request")
@router.post("/chat-stream")
async def chat_stream_with_txagent(
request: ChatRequest,
current_user: dict = Depends(get_current_user)
):
"""Streaming chat avec TxAgent intégré"""
try:
# Vérifier que l'utilisateur est médecin ou admin
if not any(role in current_user.get('roles', []) for role in ['doctor', 'admin']):
raise HTTPException(status_code=403, detail="Only doctors and admins can use TxAgent")
logger.info(f"Chat stream initiated by {current_user['email']}: {request.message}")
# Generate a response (for now, a simple response)
response_text = f"Hello! I'm your clinical assistant. You said: '{request.message}'. How can I help you with patient care today?"
# Store the chat in the database
try:
from db.mongo import db
chats_collection = db.chats
chat_entry = {
"message": request.message,
"response": response_text,
"user_id": current_user.get('_id'),
"user_email": current_user.get('email'),
"timestamp": datetime.utcnow(),
"patient_id": request.patient_id if hasattr(request, 'patient_id') else None,
"chat_type": "text_chat"
}
await chats_collection.insert_one(chat_entry)
logger.info(f"Chat stored in database for user {current_user['email']}")
except Exception as db_error:
logger.error(f"Failed to store chat in database: {str(db_error)}")
# Continue even if database storage fails
# Return streaming response
async def generate_response():
# Simulate streaming by sending the response in chunks
words = response_text.split()
chunk_size = 3 # Send 3 words at a time
for i in range(0, len(words), chunk_size):
chunk = " ".join(words[i:i + chunk_size])
if i + chunk_size < len(words):
chunk += " " # Add space if not the last chunk
yield chunk
await asyncio.sleep(0.1) # Small delay to simulate streaming
return StreamingResponse(
generate_response(),
media_type="text/plain"
)
except Exception as e:
logger.error(f"Error in TxAgent chat stream: {e}")
raise HTTPException(status_code=500, detail="Failed to process chat stream request")
@router.post("/voice/transcribe")
async def transcribe_audio(
audio: UploadFile = File(...),
current_user: dict = Depends(get_current_user)
):
"""Transcription vocale avec TxAgent intégré"""
try:
if not any(role in current_user.get('roles', []) for role in ['doctor', 'admin']):
raise HTTPException(status_code=403, detail="Only doctors and admins can use voice features")
# For now, return mock transcription
return {
"status": "success",
"transcription": "Mock voice transcription from integrated TxAgent",
"mode": "integrated"
}
except Exception as e:
logger.error(f"Error in voice transcription: {e}")
raise HTTPException(status_code=500, detail="Failed to transcribe audio")
@router.post("/voice/synthesize")
async def synthesize_speech(
request: VoiceOutputRequest,
current_user: dict = Depends(get_current_user)
):
"""Synthèse vocale avec TxAgent intégré"""
try:
if not any(role in current_user.get('roles', []) for role in ['doctor', 'admin']):
raise HTTPException(status_code=403, detail="Only doctors and admins can use voice features")
# For now, return mock audio data
audio_data = b"Mock audio data from integrated TxAgent"
return StreamingResponse(
iter([audio_data]),
media_type="audio/mpeg",
headers={"Content-Disposition": "attachment; filename=speech.mp3"}
)
except Exception as e:
logger.error(f"Error in voice synthesis: {e}")
raise HTTPException(status_code=500, detail="Failed to synthesize speech")
@router.get("/chats")
async def get_chats(current_user: dict = Depends(get_current_user)):
"""Obtient l'historique des chats"""
try:
if not any(role in current_user.get('roles', []) for role in ['doctor', 'admin']):
raise HTTPException(status_code=403, detail="Only doctors and admins can access chat history")
# Import database collections
from db.mongo import db
chats_collection = db.chats
# Query local database for chat history
cursor = chats_collection.find().sort("timestamp", -1).limit(50)
chats = await cursor.to_list(length=50)
return [
{
"id": str(chat["_id"]),
"message": chat.get("message", ""),
"response": chat.get("response", ""),
"timestamp": chat.get("timestamp"),
"user_id": str(chat.get("user_id", "")),
"patient_id": str(chat.get("patient_id", "")) if chat.get("patient_id") else None
}
for chat in chats
]
except Exception as e:
logger.error(f"Error getting chats: {e}")
raise HTTPException(status_code=500, detail="Failed to get chats")
@router.get("/patients/{patient_id}/analysis-reports/pdf")
async def get_patient_analysis_reports_pdf(
patient_id: str = Path(...),
current_user: dict = Depends(get_current_user)
):
"""Generate PDF analysis reports for a specific patient"""
try:
if not any(role in current_user.get('roles', []) for role in ['doctor', 'admin']):
raise HTTPException(status_code=403, detail="Only doctors and admins can generate PDF reports")
logger.info(f"Generating PDF analysis reports for patient {patient_id} by {current_user['email']}")
# Import database collections
from db.mongo import db
analysis_collection = db.patient_analysis_results
# Find analysis results for the patient
analysis_results = await analysis_collection.find({"patient_id": patient_id}).to_list(length=None)
if not analysis_results:
raise HTTPException(status_code=404, detail="No analysis results found for this patient")
# Create a simple PDF report
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.lib import colors
import io
# Create PDF buffer
buffer = io.BytesIO()
doc = SimpleDocTemplate(buffer, pagesize=letter)
styles = getSampleStyleSheet()
story = []
# Title
title_style = ParagraphStyle(
'CustomTitle',
parent=styles['Heading1'],
fontSize=16,
spaceAfter=30,
alignment=1 # Center alignment
)
story.append(Paragraph("Patient Analysis Report", title_style))
story.append(Spacer(1, 12))
# Patient Information
story.append(Paragraph("Patient Information", styles['Heading2']))
story.append(Spacer(1, 12))
# Get patient info from first analysis result
first_result = analysis_results[0]
patient_info = [
["Patient ID:", patient_id],
["Analysis Date:", first_result.get('timestamp', 'N/A')],
]
patient_table = Table(patient_info, colWidths=[2*inch, 4*inch])
patient_table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (0, -1), colors.grey),
('TEXTCOLOR', (0, 0), (0, -1), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
('FONTNAME', (0, 0), (-1, -1), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, -1), 10),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('BACKGROUND', (1, 0), (1, -1), colors.beige),
('GRID', (0, 0), (-1, -1), 1, colors.black)
]))
story.append(patient_table)
story.append(Spacer(1, 20))
# Analysis Results
story.append(Paragraph("Analysis Results", styles['Heading2']))
story.append(Spacer(1, 12))
for i, result in enumerate(analysis_results):
# Risk Assessment
suicide_risk = result.get('suicide_risk', {})
risk_level = suicide_risk.get('level', 'none') if isinstance(suicide_risk, dict) else 'none'
risk_score = suicide_risk.get('score', 0.0) if isinstance(suicide_risk, dict) else 0.0
risk_factors = suicide_risk.get('factors', []) if isinstance(suicide_risk, dict) else []
story.append(Paragraph(f"Analysis #{i+1}", styles['Heading3']))
story.append(Spacer(1, 6))
analysis_data = [
["Risk Level:", risk_level.upper()],
["Risk Score:", f"{risk_score:.2f}"],
["Risk Factors:", ", ".join(risk_factors) if risk_factors else "None identified"],
["Analysis Date:", result.get('timestamp', 'N/A')],
]
analysis_table = Table(analysis_data, colWidths=[2*inch, 4*inch])
analysis_table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (0, -1), colors.lightblue),
('TEXTCOLOR', (0, 0), (0, -1), colors.black),
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
('FONTNAME', (0, 0), (-1, -1), 'Helvetica'),
('FONTSIZE', (0, 0), (-1, -1), 9),
('BOTTOMPADDING', (0, 0), (-1, 0), 6),
('BACKGROUND', (1, 0), (1, -1), colors.white),
('GRID', (0, 0), (-1, -1), 1, colors.black)
]))
story.append(analysis_table)
story.append(Spacer(1, 12))
# Summary if available
if result.get('summary'):
story.append(Paragraph("Summary:", styles['Heading4']))
story.append(Paragraph(result['summary'], styles['Normal']))
story.append(Spacer(1, 12))
# Build PDF
doc.build(story)
buffer.seek(0)
return StreamingResponse(
buffer,
media_type="application/pdf",
headers={"Content-Disposition": f"attachment; filename=patient_{patient_id}_analysis_reports.pdf"}
)
except Exception as e:
logger.error(f"Error generating PDF report for patient {patient_id}: {str(e)}")
raise HTTPException(status_code=500, detail=f"Failed to generate PDF report: {str(e)}")
@router.get("/patients/analysis-reports/all/pdf")
async def get_all_patients_analysis_reports_pdf(
current_user: dict = Depends(get_current_user)
):
"""Generate PDF analysis reports for all patients"""
try:
if not any(role in current_user.get('roles', []) for role in ['doctor', 'admin']):
raise HTTPException(status_code=403, detail="Only doctors and admins can generate PDF reports")
logger.info(f"Generating PDF analysis reports for all patients by {current_user['email']}")
# Import database collections
from db.mongo import db
analysis_collection = db.patient_analysis_results
# Find all analysis results
analysis_results = await analysis_collection.find({}).to_list(length=None)
if not analysis_results:
raise HTTPException(status_code=404, detail="No analysis results found")
# Create a simple PDF report
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.lib import colors
import io
# Create PDF buffer
buffer = io.BytesIO()
doc = SimpleDocTemplate(buffer, pagesize=letter)
styles = getSampleStyleSheet()
story = []
# Title
title_style = ParagraphStyle(
'CustomTitle',
parent=styles['Heading1'],
fontSize=16,
spaceAfter=30,
alignment=1 # Center alignment
)
story.append(Paragraph("All Patients Analysis Reports", title_style))
story.append(Spacer(1, 12))
# Summary
story.append(Paragraph("Summary", styles['Heading2']))
story.append(Spacer(1, 12))
summary_data = [
["Total Analysis Reports:", str(len(analysis_results))],
["Generated Date:", datetime.now().strftime("%Y-%m-%d %H:%M:%S")],
["Generated By:", current_user['email']],
]
summary_table = Table(summary_data, colWidths=[2*inch, 4*inch])
summary_table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (0, -1), colors.grey),
('TEXTCOLOR', (0, 0), (0, -1), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
('FONTNAME', (0, 0), (-1, -1), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, -1), 10),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('BACKGROUND', (1, 0), (1, -1), colors.beige),
('GRID', (0, 0), (-1, -1), 1, colors.black)
]))
story.append(summary_table)
story.append(Spacer(1, 20))
# Group results by patient
patient_results = {}
for result in analysis_results:
patient_id = result.get('patient_id', 'unknown')
if patient_id not in patient_results:
patient_results[patient_id] = []
patient_results[patient_id].append(result)
# Patient Reports
for patient_id, results in patient_results.items():
story.append(Paragraph(f"Patient: {patient_id}", styles['Heading2']))
story.append(Spacer(1, 12))
for i, result in enumerate(results):
# Risk Assessment
suicide_risk = result.get('suicide_risk', {})
risk_level = suicide_risk.get('level', 'none') if isinstance(suicide_risk, dict) else 'none'
risk_score = suicide_risk.get('score', 0.0) if isinstance(suicide_risk, dict) else 0.0
risk_factors = suicide_risk.get('factors', []) if isinstance(suicide_risk, dict) else []
story.append(Paragraph(f"Analysis #{i+1}", styles['Heading3']))
story.append(Spacer(1, 6))
analysis_data = [
["Risk Level:", risk_level.upper()],
["Risk Score:", f"{risk_score:.2f}"],
["Risk Factors:", ", ".join(risk_factors) if risk_factors else "None identified"],
["Analysis Date:", result.get('timestamp', 'N/A')],
]
analysis_table = Table(analysis_data, colWidths=[2*inch, 4*inch])
analysis_table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (0, -1), colors.lightblue),
('TEXTCOLOR', (0, 0), (0, -1), colors.black),
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
('FONTNAME', (0, 0), (-1, -1), 'Helvetica'),
('FONTSIZE', (0, 0), (-1, -1), 9),
('BOTTOMPADDING', (0, 0), (-1, 0), 6),
('BACKGROUND', (1, 0), (1, -1), colors.white),
('GRID', (0, 0), (-1, -1), 1, colors.black)
]))
story.append(analysis_table)
story.append(Spacer(1, 12))
# Summary if available
if result.get('summary'):
story.append(Paragraph("Summary:", styles['Heading4']))
story.append(Paragraph(result['summary'], styles['Normal']))
story.append(Spacer(1, 12))
story.append(Spacer(1, 20))
# Build PDF
doc.build(story)
buffer.seek(0)
return StreamingResponse(
buffer,
media_type="application/pdf",
headers={"Content-Disposition": f"attachment; filename=all_patients_analysis_reports_{datetime.now().strftime('%Y%m%d')}.pdf"}
)
except Exception as e:
logger.error(f"Error generating PDF report for all patients: {str(e)}")
raise HTTPException(status_code=500, detail=f"Failed to generate PDF report: {str(e)}")
# Voice synthesis endpoint
@router.post("/voice/synthesize")
async def synthesize_voice(
request: dict,
current_user: dict = Depends(get_current_user)
):
"""
Convert text to speech using gTTS
"""
try:
logger.info(f"Voice synthesis initiated by {current_user['email']}")
# Extract parameters from request
text = request.get('text', '')
language = request.get('language', 'en-US')
return_format = request.get('return_format', 'mp3')
if not text:
raise HTTPException(status_code=400, detail="Text is required")
# Convert language code for gTTS (e.g., 'en-US' -> 'en')
language_code = language.split('-')[0] if '-' in language else language
# Generate speech
audio_data = text_to_speech(text, language=language_code)
# Return audio data
return StreamingResponse(
io.BytesIO(audio_data),
media_type=f"audio/{return_format}",
headers={"Content-Disposition": f"attachment; filename=speech.{return_format}"}
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in voice synthesis: {e}")
raise HTTPException(status_code=500, detail="Error generating voice output")