Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
+
import io
|
| 4 |
+
import json
|
| 5 |
+
import math
|
| 6 |
+
import datetime as dt
|
| 7 |
+
from typing import Optional, Tuple, Dict
|
| 8 |
+
|
| 9 |
+
import requests
|
| 10 |
+
import numpy as np
|
| 11 |
+
import cv2
|
| 12 |
+
from mgrs import MGRS
|
| 13 |
+
from PIL import Image
|
| 14 |
+
import matplotlib
|
| 15 |
+
matplotlib.use("Agg")
|
| 16 |
+
import matplotlib.pyplot as plt
|
| 17 |
+
import gradio as gr
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# --------------------------
|
| 21 |
+
# Константы и хелперы
|
| 22 |
+
# --------------------------
|
| 23 |
+
S2_BASE = "https://sentinel-s2-l1c.s3.amazonaws.com/tiles"
|
| 24 |
+
UA = {"User-Agent": "s2-ndvi-gradio-tool/1.0 (+https://example.com)"}
|
| 25 |
+
|
| 26 |
+
# Sentinel-2 тайлы 10м — 10980 px (около 109.8 км), 100 км поле внутри с ~490 px отступом
|
| 27 |
+
TILE_SIZE_10M = 10980
|
| 28 |
+
GRID_100KM_M = 100_000
|
| 29 |
+
MARGIN_PX_10M = (TILE_SIZE_10M - GRID_100KM_M // 10) // 2 # ~490
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# --------------------------
|
| 33 |
+
# Геокодирование / парсинг
|
| 34 |
+
# --------------------------
|
| 35 |
+
def parse_latlon(text: str) -> Optional[Tuple[float, float]]:
|
| 36 |
+
if not text:
|
| 37 |
+
return None
|
| 38 |
+
m = re.match(r"^\s*([+-]?\d+(?:\.\d+)?)\s*[,; ]\s*([+-]?\d+(?:\.\d+)?)\s*$", text)
|
| 39 |
+
if not m:
|
| 40 |
+
return None
|
| 41 |
+
lat = float(m.group(1))
|
| 42 |
+
lon = float(m.group(2))
|
| 43 |
+
if not (-90 <= lat <= 90 and -180 <= lon <= 180):
|
| 44 |
+
return None
|
| 45 |
+
return lat, lon
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def geocode_nominatim(query: str, lang: str = "ru") -> Optional[Tuple[float, float, str]]:
|
| 49 |
+
url = "https://nominatim.openstreetmap.org/search"
|
| 50 |
+
params = {"q": query, "format": "jsonv2", "limit": 1, "accept-language": lang}
|
| 51 |
+
try:
|
| 52 |
+
r = requests.get(url, params=params, headers=UA, timeout=20)
|
| 53 |
+
if r.status_code != 200:
|
| 54 |
+
return None
|
| 55 |
+
data = r.json()
|
| 56 |
+
if not data:
|
| 57 |
+
return None
|
| 58 |
+
lat = float(data[0]["lat"])
|
| 59 |
+
lon = float(data[0]["lon"])
|
| 60 |
+
display = data[0].get("display_name", query)
|
| 61 |
+
return lat, lon, display
|
| 62 |
+
except Exception:
|
| 63 |
+
return None
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# --------------------------
|
| 67 |
+
# MGRS / индексация тайла
|
| 68 |
+
# --------------------------
|
| 69 |
+
def latlon_to_mgrs(lat: float, lon: float) -> Dict[str, any]:
|
| 70 |
+
"""
|
| 71 |
+
Возвращает словарь с полями:
|
| 72 |
+
- zone (int), band (str), square (str) — компоненты пути S3
|
| 73 |
+
- easting_m, northing_m — координаты внутри 100 км квадрата (метры)
|
| 74 |
+
- mgrs_str — полный MGRS (с 5+5 цифрами)
|
| 75 |
+
"""
|
| 76 |
+
m = MGRS()
|
| 77 |
+
s = m.toMGRS(lat, lon, MGRSPrecision=5) # Пример: '31UDQ4825111980'
|
| 78 |
+
# Найдём границу цифр/букв
|
| 79 |
+
i = 0
|
| 80 |
+
while i < len(s) and s[i].isdigit():
|
| 81 |
+
i += 1
|
| 82 |
+
zone = int(s[:i])
|
| 83 |
+
band = s[i]
|
| 84 |
+
square = s[i + 1:i + 3]
|
| 85 |
+
digits = s[i + 3:]
|
| 86 |
+
e_str = digits[:5]
|
| 87 |
+
n_str = digits[5:10]
|
| 88 |
+
easting_m = int(e_str)
|
| 89 |
+
northing_m = int(n_str)
|
| 90 |
+
return {
|
| 91 |
+
"zone": zone,
|
| 92 |
+
"band": band,
|
| 93 |
+
"square": square,
|
| 94 |
+
"easting_m": easting_m,
|
| 95 |
+
"northing_m": northing_m,
|
| 96 |
+
"mgrs_str": s
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def build_s2_tile_prefix(zone: int, band: str, square: str, d: dt.date, seq: int) -> str:
|
| 101 |
+
# В AWS путь вида: /tiles/{utm_zone}/{lat_band}/{grid_square}/{YYYY}/{M}/{D}/{sequence}/
|
| 102 |
+
return f"{S2_BASE}/{zone}/{band}/{square}/{d.year}/{d.month}/{d.day}/{seq}"
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def url_band(zone: int, band: str, square: str, d: dt.date, seq: int, band_name: str) -> str:
|
| 106 |
+
# band_name: 'B04', 'B08', 'TCI', 'QA60' и т.д.
|
| 107 |
+
return f"{build_s2_tile_prefix(zone, band, square, d, seq)}/{band_name}.jp2"
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def url_preview(zone: int, band: str, square: str, d: dt.date, seq: int) -> str:
|
| 111 |
+
return f"{build_s2_tile_prefix(zone, band, square, d, seq)}/preview.jpg"
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def head_exists(url: str) -> bool:
|
| 115 |
+
try:
|
| 116 |
+
r = requests.head(url, headers=UA, timeout=15)
|
| 117 |
+
return r.status_code == 200
|
| 118 |
+
except Exception:
|
| 119 |
+
return False
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def find_sequence_with_data(zone: int, band: str, square: str, d: dt.date, test_band="B04") -> Optional[int]:
|
| 123 |
+
# Пробуем seq 0..3 пока найдём объект
|
| 124 |
+
for seq in range(4):
|
| 125 |
+
if head_exists(url_band(zone, band, square, d, seq, test_band)):
|
| 126 |
+
return seq
|
| 127 |
+
return None
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
# --------------------------
|
| 131 |
+
# Загрузка и декодирование JP2
|
| 132 |
+
# --------------------------
|
| 133 |
+
def http_get(url: str) -> Optional[bytes]:
|
| 134 |
+
try:
|
| 135 |
+
r = requests.get(url, headers=UA, timeout=60)
|
| 136 |
+
if r.status_code != 200:
|
| 137 |
+
return None
|
| 138 |
+
return r.content
|
| 139 |
+
except Exception:
|
| 140 |
+
return None
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def decode_jp2_to_np(jp2_bytes: bytes, flags=cv2.IMREAD_UNCHANGED):
|
| 144 |
+
# Возвращает numpy массив (H, W) или (H, W, C); 16-bit для каналов, 8/16-bit для TCI
|
| 145 |
+
arr = np.frombuffer(jp2_bytes, dtype=np.uint8)
|
| 146 |
+
img = cv2.imdecode(arr, flags)
|
| 147 |
+
return img
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
# --------------------------
|
| 151 |
+
# Геометрия ROI внутри тайла
|
| 152 |
+
# --------------------------
|
| 153 |
+
def pixel_from_mgrs(easting_m: int, northing_m: int) -> Tuple[int, int]:
|
| 154 |
+
"""
|
| 155 |
+
Перевод ��оложения внутри 100 км квадрата (метры от юго-западного угла)
|
| 156 |
+
в пиксели 10 м данных тайла (с учётом ~490 px отступа).
|
| 157 |
+
Возвращает (col_x, row_y).
|
| 158 |
+
"""
|
| 159 |
+
x_px = MARGIN_PX_10M + int(round(easting_m / 10.0))
|
| 160 |
+
# y: сверху 0, внутри квадрата от южной границы -> переворачиваем
|
| 161 |
+
y_px = MARGIN_PX_10M + int(round((GRID_100KM_M - northing_m) / 10.0))
|
| 162 |
+
# страхуемся в пределах допустимого
|
| 163 |
+
x_px = max(0, min(TILE_SIZE_10M - 1, x_px))
|
| 164 |
+
y_px = max(0, min(TILE_SIZE_10M - 1, y_px))
|
| 165 |
+
return x_px, y_px
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def crop_roi(img: np.ndarray, cx: int, cy: int, rad_px: int) -> np.ndarray:
|
| 169 |
+
h, w = img.shape[:2]
|
| 170 |
+
x0 = max(0, cx - rad_px)
|
| 171 |
+
x1 = min(w, cx + rad_px)
|
| 172 |
+
y0 = max(0, cy - rad_px)
|
| 173 |
+
y1 = min(h, cy + rad_px)
|
| 174 |
+
return img[y0:y1, x0:x1].copy(), (x0, y0, x1, y1)
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
# --------------------------
|
| 178 |
+
# NDVI и отрисовка
|
| 179 |
+
# --------------------------
|
| 180 |
+
def compute_ndvi(b08_10m: np.ndarray, b04_10m: np.ndarray, qa60_10m: Optional[np.ndarray] = None) -> Tuple[np.ndarray, Optional[np.ndarray]]:
|
| 181 |
+
b08 = b08_10m.astype(np.float32)
|
| 182 |
+
b04 = b04_10m.astype(np.float32)
|
| 183 |
+
denom = (b08 + b04)
|
| 184 |
+
ndvi = np.where(denom > 0, (b08 - b04) / denom, np.nan)
|
| 185 |
+
|
| 186 |
+
cloud_mask = None
|
| 187 |
+
if qa60_10m is not None:
|
| 188 |
+
# QA60: биты 10 (opaque clouds) и 11 (cirrus)
|
| 189 |
+
qa = qa60_10m.astype(np.uint16)
|
| 190 |
+
clouds = (((qa >> 10) & 1) | ((qa >> 11) & 1)) > 0
|
| 191 |
+
ndvi = np.where(clouds, np.nan, ndvi)
|
| 192 |
+
cloud_mask = clouds
|
| 193 |
+
return ndvi, cloud_mask
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
def colorize_ndvi(ndvi: np.ndarray, cloud_mask: Optional[np.ndarray] = None,
|
| 197 |
+
vmin: float = -0.2, vmax: float = 0.9) -> np.ndarray:
|
| 198 |
+
x = ndvi.copy()
|
| 199 |
+
# Отдельно отметим NaN (облака/нет данных)
|
| 200 |
+
nan_mask = np.isnan(x)
|
| 201 |
+
x = np.clip(x, vmin, vmax)
|
| 202 |
+
norm = (x - vmin) / (vmax - vmin + 1e-9)
|
| 203 |
+
cmap = plt.get_cmap("RdYlGn") # красный->желтый->зеленый
|
| 204 |
+
rgb = (cmap(norm)[..., :3] * 255).astype(np.uint8)
|
| 205 |
+
|
| 206 |
+
# Заштрихуем NaN серым
|
| 207 |
+
if cloud_mask is not None:
|
| 208 |
+
nan_mask = nan_mask | cloud_mask
|
| 209 |
+
rgb[nan_mask] = np.array([180, 180, 180], dtype=np.uint8)
|
| 210 |
+
return rgb
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
def stretch_16_to_8(img: np.ndarray, p_low=2, p_high=98) -> np.ndarray:
|
| 214 |
+
# Клип и линейная растяжка для лучшего контраста
|
| 215 |
+
if img.ndim == 2:
|
| 216 |
+
lo, hi = np.percentile(img[img > 0], [p_low, p_high]) if np.any(img > 0) else (0, 1)
|
| 217 |
+
hi = max(hi, lo + 1)
|
| 218 |
+
out = (np.clip(img, lo, hi) - lo) / (hi - lo + 1e-6)
|
| 219 |
+
return (out * 255).astype(np.uint8)
|
| 220 |
+
else:
|
| 221 |
+
out = np.zeros_like(img, dtype=np.uint8)
|
| 222 |
+
for c in range(img.shape[2]):
|
| 223 |
+
chan = img[..., c]
|
| 224 |
+
if np.any(chan > 0):
|
| 225 |
+
lo, hi = np.percentile(chan[chan > 0], [p_low, p_high])
|
| 226 |
+
hi = max(hi, lo + 1)
|
| 227 |
+
out[..., c] = ((np.clip(chan, lo, hi) - lo) / (hi - lo + 1e-6) * 255).astype(np.uint8)
|
| 228 |
+
return out
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
# --------------------------
|
| 232 |
+
# Основная логика анализа
|
| 233 |
+
# --------------------------
|
| 234 |
+
def analyze_vegetation(
|
| 235 |
+
address_or_coords: str,
|
| 236 |
+
date_str: str,
|
| 237 |
+
radius_m: int,
|
| 238 |
+
) -> Tuple[np.ndarray, np.ndarray, str]:
|
| 239 |
+
# 1) Получаем координаты
|
| 240 |
+
latlon = parse_latlon(address_or_coords.strip())
|
| 241 |
+
resolved_label = None
|
| 242 |
+
if latlon is None:
|
| 243 |
+
geo = geocode_nominatim(address_or_coords.strip())
|
| 244 |
+
if geo is None:
|
| 245 |
+
raise gr.Error("Не удалось геокодировать адрес или распознать координаты. Попробуйте формат '55.75, 37.61' или уточните адрес.")
|
| 246 |
+
lat, lon, resolved_label = geo
|
| 247 |
+
else:
|
| 248 |
+
lat, lon = latlon
|
| 249 |
+
resolved_label = f"Координаты: {lat:.6f}, {lon:.6f}"
|
| 250 |
+
|
| 251 |
+
# 2) MGRS тайл + положение
|
| 252 |
+
tile = latlon_to_mgrs(lat, lon)
|
| 253 |
+
zone = tile["zone"]
|
| 254 |
+
band = tile["band"]
|
| 255 |
+
square = tile["square"]
|
| 256 |
+
easting_m = tile["easting_m"]
|
| 257 |
+
northing_m = tile["northing_m"]
|
| 258 |
+
mgrs_str = tile["mgrs_str"]
|
| 259 |
+
|
| 260 |
+
cx, cy = pixel_from_mgrs(easting_m, northing_m)
|
| 261 |
+
rad_px = max(5, int(radius_m / 10)) # 10 м/пикс
|
| 262 |
+
|
| 263 |
+
# 3) Дата и последовательность
|
| 264 |
+
if date_str:
|
| 265 |
+
try:
|
| 266 |
+
d = dt.datetime.strptime(date_str.strip(), "%Y-%m-%d").date()
|
| 267 |
+
except Exception:
|
| 268 |
+
raise gr.Error("Дата должна быть в формате ГГГГ-ММ-ДД (например, 2024-07-15).")
|
| 269 |
+
else:
|
| 270 |
+
d = dt.date.today()
|
| 271 |
+
|
| 272 |
+
seq = find_sequence_with_data(zone, band, square, d, test_band="B04")
|
| 273 |
+
if seq is None:
|
| 274 |
+
# Попробуем отмотать назад до 10 дней
|
| 275 |
+
found = False
|
| 276 |
+
for back in range(1, 11):
|
| 277 |
+
dd = d - dt.timedelta(days=back)
|
| 278 |
+
seq_try = find_sequence_with_data(zone, band, square, dd, test_band="B04")
|
| 279 |
+
if seq_try is not None:
|
| 280 |
+
d = dd
|
| 281 |
+
seq = seq_try
|
| 282 |
+
found = True
|
| 283 |
+
break
|
| 284 |
+
if not found:
|
| 285 |
+
raise gr.Error("Не нашёл подходящих сцен Sentinel-2 для этой локации и последних 10 дней.")
|
| 286 |
+
|
| 287 |
+
# 4) Скачиваем каналы: B04 (red), B08 (nir), QA60 (облака), TCI (true color) либо B02/B03/B04
|
| 288 |
+
url_b04 = url_band(zone, band, square, d, seq, "B04")
|
| 289 |
+
url_b08 = url_band(zone, band, square, d, seq, "B08")
|
| 290 |
+
url_qa60 = url_band(zone, band, square, d, seq, "QA60")
|
| 291 |
+
url_tci = url_band(zone, band, square, d, seq, "TCI")
|
| 292 |
+
|
| 293 |
+
b04_bytes = http_get(url_b04)
|
| 294 |
+
b08_bytes = http_get(url_b08)
|
| 295 |
+
if b04_bytes is None or b08_bytes is None:
|
| 296 |
+
raise gr.Error("Не удалось скачать каналы B04/B08. Попробуйте другую дату.")
|
| 297 |
+
|
| 298 |
+
qa60_bytes = http_get(url_qa60) # может быть None
|
| 299 |
+
tci_bytes = http_get(url_tci) # может быть None
|
| 300 |
+
|
| 301 |
+
# 5) Декодирование
|
| 302 |
+
b04 = decode_jp2_to_np(b04_bytes, cv2.IMREAD_UNCHANGED) # (10980, 10980), uint16
|
| 303 |
+
b08 = decode_jp2_to_np(b08_bytes, cv2.IMREAD_UNCHANGED)
|
| 304 |
+
|
| 305 |
+
if b04 is None or b08 is None or b04.shape != b08.shape:
|
| 306 |
+
raise gr.Error("Ошибка чтения JP2 или несовпадение размеров каналов B04/B08.")
|
| 307 |
+
|
| 308 |
+
# QA60 обычно 60м (1830x1830) — апсемплим до 10м
|
| 309 |
+
qa10m = None
|
| 310 |
+
cloud_pct_roi = None
|
| 311 |
+
if qa60_bytes is not None:
|
| 312 |
+
qa = decode_jp2_to_np(qa60_bytes, cv2.IMREAD_UNCHANGED)
|
| 313 |
+
if qa is not None:
|
| 314 |
+
qa10m = cv2.resize(qa, (TILE_SIZE_10M, TILE_SIZE_10M), interpolation=cv2.INTER_NEAREST)
|
| 315 |
+
|
| 316 |
+
# 6) Кадрируем ROI
|
| 317 |
+
b04_roi, (x0, y0, x1, y1) = crop_roi(b04, cx, cy, rad_px)
|
| 318 |
+
b08_roi, _ = crop_roi(b08, cx, cy, rad_px)
|
| 319 |
+
qa_roi = None
|
| 320 |
+
if qa10m is not None:
|
| 321 |
+
qa_roi, _ = crop_roi(qa10m, cx, cy, rad_px)
|
| 322 |
+
|
| 323 |
+
# 7) NDVI + маска облаков
|
| 324 |
+
ndvi_roi, cloud_mask = compute_ndvi(b08_roi, b04_roi, qa_roi)
|
| 325 |
+
|
| 326 |
+
# 8) Статистика
|
| 327 |
+
valid = ~np.isnan(ndvi_roi)
|
| 328 |
+
if np.any(valid):
|
| 329 |
+
mean_ndvi = float(np.nanmean(ndvi_roi))
|
| 330 |
+
med_ndvi = float(np.nanmedian(ndvi_roi))
|
| 331 |
+
pct_veg_good = float(np.nanmean(ndvi_roi > 0.5) * 100.0)
|
| 332 |
+
pct_veg_med = float(np.nanmean((ndvi_roi > 0.3) & (ndvi_roi <= 0.5)) * 100.0)
|
| 333 |
+
else:
|
| 334 |
+
mean_ndvi = float("nan")
|
| 335 |
+
med_ndvi = float("nan")
|
| 336 |
+
pct_veg_good = 0.0
|
| 337 |
+
pct_veg_med = 0.0
|
| 338 |
+
|
| 339 |
+
if cloud_mask is not None:
|
| 340 |
+
cloud_pct_roi = float(np.mean(cloud_mask) * 100.0)
|
| 341 |
+
else:
|
| 342 |
+
cloud_pct_roi = None
|
| 343 |
+
|
| 344 |
+
# 9) Рендер NDVI
|
| 345 |
+
ndvi_rgb = colorize_ndvi(ndvi_roi, cloud_mask)
|
| 346 |
+
|
| 347 |
+
# 10) True color ROI
|
| 348 |
+
# a) Сначала пытаемся TCI
|
| 349 |
+
tci_roi_rgb = None
|
| 350 |
+
if tci_bytes is not None:
|
| 351 |
+
tci = decode_jp2_to_np(tci_bytes, cv2.IMREAD_UNCHANGED)
|
| 352 |
+
if tci is not None:
|
| 353 |
+
if tci.ndim == 3:
|
| 354 |
+
# cv2 читает BGR — переведём в RGB
|
| 355 |
+
if tci.shape[2] == 3:
|
| 356 |
+
tci = cv2.cvtColor(tci, cv2.COLOR_BGR2RGB)
|
| 357 |
+
tci_roi, _ = crop_roi(tci, cx, cy, rad_px)
|
| 358 |
+
tci_roi_rgb = stretch_16_to_8(tci_roi)
|
| 359 |
+
else:
|
| 360 |
+
# бывает моно — не используем
|
| 361 |
+
tci_roi_rgb = None
|
| 362 |
+
|
| 363 |
+
# b) Если TCI нет — соберём из B02/B03/B04
|
| 364 |
+
if tci_roi_rgb is None:
|
| 365 |
+
url_b02 = url_band(zone, band, square, d, seq, "B02")
|
| 366 |
+
url_b03 = url_band(zone, band, square, d, seq, "B03")
|
| 367 |
+
b02_bytes = http_get(url_b02)
|
| 368 |
+
b03_bytes = http_get(url_b03)
|
| 369 |
+
if b02_bytes is not None and b03_bytes is not None:
|
| 370 |
+
b02 = decode_jp2_to_np(b02_bytes, cv2.IMREAD_UNCHANGED)
|
| 371 |
+
b03 = decode_jp2_to_np(b03_bytes, cv2.IMREAD_UNCHANGED)
|
| 372 |
+
if b02 is not None and b03 is not None and b02.shape == b03.shape == b04.shape:
|
| 373 |
+
b02_roi, _ = crop_roi(b02, cx, cy, rad_px)
|
| 374 |
+
b03_roi, _ = crop_roi(b03, cx, cy, rad_px)
|
| 375 |
+
rgb16 = np.dstack([b04_roi, b03_roi, b02_roi])
|
| 376 |
+
tci_roi_rgb = stretch_16_to_8(rgb16)
|
| 377 |
+
# если не получилось — сделаем псевдоцвет из B08/B04
|
| 378 |
+
if tci_roi_rgb is None:
|
| 379 |
+
pseudo = np.dstack([b08_roi, b04_roi, b04_roi])
|
| 380 |
+
tci_roi_rgb = stretch_16_to_8(pseudo)
|
| 381 |
+
|
| 382 |
+
# 11) Текстовый вывод/диагностика
|
| 383 |
+
url_used_preview = url_preview(zone, band, square, d, seq)
|
| 384 |
+
info_lines = []
|
| 385 |
+
info_lines.append(f"Адрес/точка: {resolved_label}")
|
| 386 |
+
info_lines.append(f"MGRS тайл: {mgrs_str} (zone={zone}, band={band}, square={square})")
|
| 387 |
+
info_lines.append(f"Дата съёмки: {d.isoformat()} (seq={seq})")
|
| 388 |
+
if cloud_pct_roi is not None:
|
| 389 |
+
info_lines.append(f"Облака в ROI: {cloud_pct_roi:.1f}%")
|
| 390 |
+
if not np.isnan(mean_ndvi):
|
| 391 |
+
info_lines.append(f"Средний NDVI (ROI): {mean_ndvi:.3f}")
|
| 392 |
+
info_lines.append(f"Медианный NDVI (ROI): {med_ndvi:.3f}")
|
| 393 |
+
info_lines.append(f"Доля пикселей NDVI>0.5: {pct_veg_good:.1f}%")
|
| 394 |
+
info_lines.append(f"Доля пикселей 0.3<NDVI≤0.5: {pct_veg_med:.1f}%")
|
| 395 |
+
# Грубая классификация
|
| 396 |
+
if mean_ndvi < 0.25:
|
| 397 |
+
concl = "Низкая растительность/стресс или открытая почва."
|
| 398 |
+
elif mean_ndvi < 0.45:
|
| 399 |
+
concl = "Умеренная растительность."
|
| 400 |
+
else:
|
| 401 |
+
concl = "Хорошее состояние растительности."
|
| 402 |
+
info_lines.append(f"Вывод: {concl}")
|
| 403 |
+
else:
|
| 404 |
+
info_lines.append("Недостаточно валидных пикселей для оценки (возможно, облака).")
|
| 405 |
+
|
| 406 |
+
info_lines.append("")
|
| 407 |
+
info_lines.append("Служебное:")
|
| 408 |
+
info_lines.append(f"Пример ссылки на предпросмотр: {url_used_preview}")
|
| 409 |
+
|
| 410 |
+
summary_md = " \n".join(info_lines)
|
| 411 |
+
|
| 412 |
+
# 12) Возвращаем изображения как numpy (RGB) + текст
|
| 413 |
+
return tci_roi_rgb, ndvi_rgb, summary_md
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
# --------------------------
|
| 417 |
+
# Gradio UI
|
| 418 |
+
# --------------------------
|
| 419 |
+
with gr.Blocks(title="Sentinel-2 NDVI по адресу") as demo:
|
| 420 |
+
gr.Markdown(
|
| 421 |
+
"""
|
| 422 |
+
# NDVI по адресу/координатам (Sentinel-2 L1C, AWS)
|
| 423 |
+
Введите адрес (или координаты в формате `lat, lon`), при желании дату и радиус.
|
| 424 |
+
Инструмент скачивает данные напрямую из публичного бакета AWS без ключей.
|
| 425 |
+
"""
|
| 426 |
+
)
|
| 427 |
+
with gr.Row():
|
| 428 |
+
address_in = gr.Textbox(label="Адрес или координаты (lat, lon)", placeholder="Например: Москва, Тверская 1 или 55.75, 37.61", lines=1)
|
| 429 |
+
date_in = gr.Textbox(label="Дата (ГГГГ-ММ-ДД) — опционально", placeholder="например: 2025-07-01 (пусто = сегодня/последние дни)")
|
| 430 |
+
radius_in = gr.Slider(label="Радиус области интереса (м)", minimum=100, maximum=5000, step=50, value=1000)
|
| 431 |
+
|
| 432 |
+
run_btn = gr.Button("Анализировать NDVI")
|
| 433 |
+
with gr.Row():
|
| 434 |
+
tci_out = gr.Image(label="True Color (ROI)", type="numpy")
|
| 435 |
+
ndvi_out = gr.Image(label="NDVI (ROI)", type="numpy")
|
| 436 |
+
summary_out = gr.Markdown()
|
| 437 |
+
|
| 438 |
+
def on_click(addr, dstr, rad):
|
| 439 |
+
return analyze_vegetation(addr, dstr, int(rad))
|
| 440 |
+
|
| 441 |
+
run_btn.click(fn=on_click, inputs=[address_in, date_in, radius_in], outputs=[tci_out, ndvi_out, summary_out])
|
| 442 |
+
|
| 443 |
+
if __name__ == "__main__":
|
| 444 |
+
# Запуск локально: http://127.0.0.1:7860
|
| 445 |
+
demo.launch()
|