Spaces:
Sleeping
Sleeping
Upload gradio_app.py with huggingface_hub
Browse files- gradio_app.py +149 -0
gradio_app.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import cv2
|
| 6 |
+
|
| 7 |
+
# Load the model
|
| 8 |
+
@gr.cache
|
| 9 |
+
def load_model():
|
| 10 |
+
"""Load the age group classification model"""
|
| 11 |
+
try:
|
| 12 |
+
model = tf.keras.models.load_model('resnet50v2_age_classifier_best.h5')
|
| 13 |
+
return model
|
| 14 |
+
except:
|
| 15 |
+
# Fallback if model file not found
|
| 16 |
+
return None
|
| 17 |
+
|
| 18 |
+
# Age group labels
|
| 19 |
+
AGE_GROUPS = {
|
| 20 |
+
0: "Youth (0-20)",
|
| 21 |
+
1: "Young Adult (21-40)",
|
| 22 |
+
2: "Middle Age (41-60)",
|
| 23 |
+
3: "Senior (61-80)",
|
| 24 |
+
4: "Elderly (81-100)"
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
def preprocess_image(image):
|
| 28 |
+
"""Preprocess image for model input"""
|
| 29 |
+
if image is None:
|
| 30 |
+
return None
|
| 31 |
+
|
| 32 |
+
# Convert to RGB if needed
|
| 33 |
+
if len(image.shape) == 3 and image.shape[2] == 4:
|
| 34 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
|
| 35 |
+
elif len(image.shape) == 3 and image.shape[2] == 1:
|
| 36 |
+
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
|
| 37 |
+
|
| 38 |
+
# Resize to model input size
|
| 39 |
+
image = cv2.resize(image, (224, 224))
|
| 40 |
+
|
| 41 |
+
# Normalize to [0, 1]
|
| 42 |
+
image = image.astype(np.float32) / 255.0
|
| 43 |
+
|
| 44 |
+
# Add batch dimension
|
| 45 |
+
image = np.expand_dims(image, axis=0)
|
| 46 |
+
|
| 47 |
+
return image
|
| 48 |
+
|
| 49 |
+
def predict_age_group(image):
|
| 50 |
+
"""Predict age group from facial image"""
|
| 51 |
+
if image is None:
|
| 52 |
+
return "Please upload an image."
|
| 53 |
+
|
| 54 |
+
model = load_model()
|
| 55 |
+
if model is None:
|
| 56 |
+
return "Model not available. Please check the model file."
|
| 57 |
+
|
| 58 |
+
# Preprocess the image
|
| 59 |
+
processed_image = preprocess_image(image)
|
| 60 |
+
if processed_image is None:
|
| 61 |
+
return "Error processing image."
|
| 62 |
+
|
| 63 |
+
try:
|
| 64 |
+
# Get predictions
|
| 65 |
+
predictions = model.predict(processed_image)[0]
|
| 66 |
+
|
| 67 |
+
# Get top prediction
|
| 68 |
+
predicted_class = np.argmax(predictions)
|
| 69 |
+
confidence = predictions[predicted_class]
|
| 70 |
+
|
| 71 |
+
# Format results
|
| 72 |
+
result = f"**Predicted Age Group:** {AGE_GROUPS[predicted_class]}\n"
|
| 73 |
+
result += f"**Confidence:** {confidence:.1%}\n\n"
|
| 74 |
+
result += "**All Predictions:**\n"
|
| 75 |
+
|
| 76 |
+
# Sort by confidence
|
| 77 |
+
sorted_indices = np.argsort(predictions)[::-1]
|
| 78 |
+
for i, idx in enumerate(sorted_indices):
|
| 79 |
+
emoji = "π―" if i == 0 else "π"
|
| 80 |
+
result += f"{emoji} {AGE_GROUPS[idx]}: {predictions[idx]:.1%}\n"
|
| 81 |
+
|
| 82 |
+
return result
|
| 83 |
+
|
| 84 |
+
except Exception as e:
|
| 85 |
+
return f"Error during prediction: {str(e)}"
|
| 86 |
+
|
| 87 |
+
# Create Gradio interface
|
| 88 |
+
def create_demo():
|
| 89 |
+
"""Create the Gradio demo interface"""
|
| 90 |
+
|
| 91 |
+
title = "π― Age Group Classification"
|
| 92 |
+
description = """
|
| 93 |
+
This model classifies facial images into 5 age groups instead of predicting exact ages.
|
| 94 |
+
|
| 95 |
+
**Why Age Groups?**
|
| 96 |
+
- More reliable than exact age prediction
|
| 97 |
+
- Solves common bias where 70-year-olds are predicted as 30-year-olds
|
| 98 |
+
- More practical for most applications
|
| 99 |
+
|
| 100 |
+
**Age Groups:**
|
| 101 |
+
- πΆ Youth (0-20)
|
| 102 |
+
- π§ Young Adult (21-40)
|
| 103 |
+
- π¨ Middle Age (41-60)
|
| 104 |
+
- π΄ Senior (61-80)
|
| 105 |
+
- π΅ Elderly (81-100)
|
| 106 |
+
|
| 107 |
+
Upload a clear frontal face image for best results!
|
| 108 |
+
"""
|
| 109 |
+
|
| 110 |
+
article = """
|
| 111 |
+
### Model Details
|
| 112 |
+
- **Architecture:** ResNet50V2 with transfer learning
|
| 113 |
+
- **Performance:** 75.5% validation accuracy
|
| 114 |
+
- **Training:** 13 epochs with early stopping
|
| 115 |
+
- **Dataset:** UTKFace (23,687 images)
|
| 116 |
+
|
| 117 |
+
### Limitations
|
| 118 |
+
- Works best with frontal face images
|
| 119 |
+
- Performance may vary with extreme lighting
|
| 120 |
+
- Border cases between age groups can be challenging
|
| 121 |
+
|
| 122 |
+
### Bias Correction
|
| 123 |
+
This model was specifically designed to solve age prediction bias, particularly the common issue where seniors are incorrectly classified as young adults.
|
| 124 |
+
"""
|
| 125 |
+
|
| 126 |
+
# Create interface
|
| 127 |
+
iface = gr.Interface(
|
| 128 |
+
fn=predict_age_group,
|
| 129 |
+
inputs=gr.Image(type="numpy", label="Upload Face Image"),
|
| 130 |
+
outputs=gr.Textbox(label="Age Group Prediction", lines=10),
|
| 131 |
+
title=title,
|
| 132 |
+
description=description,
|
| 133 |
+
article=article,
|
| 134 |
+
examples=[
|
| 135 |
+
# Add example images if available
|
| 136 |
+
],
|
| 137 |
+
theme="default",
|
| 138 |
+
allow_flagging="never"
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
return iface
|
| 142 |
+
|
| 143 |
+
if __name__ == "__main__":
|
| 144 |
+
demo = create_demo()
|
| 145 |
+
demo.launch(
|
| 146 |
+
share=True,
|
| 147 |
+
server_name="0.0.0.0",
|
| 148 |
+
server_port=7860
|
| 149 |
+
)
|