Update app.py
Browse files
app.py
CHANGED
|
@@ -33,7 +33,8 @@ print(f"CLOUDFLARE_AUTH_TOKEN: {API_TOKEN[:5]}..." if API_TOKEN else "Not set")
|
|
| 33 |
MODELS = [
|
| 34 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
| 35 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 36 |
-
"@cf/meta/llama-3.1-8b-instruct"
|
|
|
|
| 37 |
]
|
| 38 |
|
| 39 |
# Initialize LlamaParse
|
|
@@ -63,32 +64,60 @@ def load_document(file: NamedTemporaryFile, parser: str = "llamaparse") -> List[
|
|
| 63 |
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
|
| 64 |
|
| 65 |
def get_embeddings():
|
| 66 |
-
return HuggingFaceEmbeddings(model_name="sentence-transformers/
|
| 67 |
|
| 68 |
def update_vectors(files, parser):
|
|
|
|
|
|
|
|
|
|
| 69 |
if not files:
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
embed = get_embeddings()
|
| 73 |
total_chunks = 0
|
| 74 |
|
| 75 |
all_data = []
|
| 76 |
for file in files:
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
if os.path.exists("faiss_database"):
|
|
|
|
| 82 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
| 83 |
database.add_documents(all_data)
|
| 84 |
else:
|
|
|
|
| 85 |
database = FAISS.from_documents(all_data, embed)
|
| 86 |
|
| 87 |
database.save_local("faiss_database")
|
|
|
|
| 88 |
|
| 89 |
-
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}."
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
-
def generate_chunked_response(prompt, model, max_tokens=
|
| 92 |
print(f"Starting generate_chunked_response with {num_calls} calls")
|
| 93 |
full_response = ""
|
| 94 |
messages = [{"role": "user", "content": prompt}]
|
|
@@ -214,27 +243,39 @@ def retry_last_response(history, use_web_search, model, temperature, num_calls):
|
|
| 214 |
|
| 215 |
return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls)
|
| 216 |
|
| 217 |
-
def respond(message, history, model, temperature, num_calls, use_web_search):
|
| 218 |
logging.info(f"User Query: {message}")
|
| 219 |
logging.info(f"Model Used: {model}")
|
| 220 |
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
| 221 |
|
|
|
|
|
|
|
| 222 |
try:
|
| 223 |
if use_web_search:
|
| 224 |
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
|
| 225 |
response = f"{main_content}\n\n{sources}"
|
| 226 |
first_line = response.split('\n')[0] if response else ''
|
| 227 |
-
logging.info(f"Generated Response (first line): {first_line}")
|
| 228 |
yield response
|
| 229 |
else:
|
| 230 |
embed = get_embeddings()
|
| 231 |
if os.path.exists("faiss_database"):
|
| 232 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
| 233 |
retriever = database.as_retriever()
|
| 234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
| 236 |
else:
|
| 237 |
context_str = "No documents available."
|
|
|
|
|
|
|
| 238 |
|
| 239 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
| 240 |
# Use Cloudflare API
|
|
@@ -244,7 +285,7 @@ def respond(message, history, model, temperature, num_calls, use_web_search):
|
|
| 244 |
yield partial_response
|
| 245 |
else:
|
| 246 |
# Use Hugging Face API
|
| 247 |
-
for partial_response in get_response_from_pdf(message, model, num_calls=num_calls, temperature=temperature):
|
| 248 |
first_line = partial_response.split('\n')[0] if partial_response else ''
|
| 249 |
logging.info(f"Generated Response (first line): {first_line}")
|
| 250 |
yield partial_response
|
|
@@ -253,7 +294,7 @@ def respond(message, history, model, temperature, num_calls, use_web_search):
|
|
| 253 |
if "microsoft/Phi-3-mini-4k-instruct" in model:
|
| 254 |
logging.info("Falling back to Mistral model due to Phi-3 error")
|
| 255 |
fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
|
| 256 |
-
yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search)
|
| 257 |
else:
|
| 258 |
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
|
| 259 |
|
|
@@ -284,7 +325,8 @@ After writing the document, please provide a list of sources used in your respon
|
|
| 284 |
payload = {
|
| 285 |
"messages": inputs,
|
| 286 |
"stream": True,
|
| 287 |
-
"temperature": temperature
|
|
|
|
| 288 |
}
|
| 289 |
|
| 290 |
full_response = ""
|
|
@@ -335,7 +377,7 @@ After writing the document, please provide a list of sources used in your respon
|
|
| 335 |
for i in range(num_calls):
|
| 336 |
for message in client.chat_completion(
|
| 337 |
messages=[{"role": "user", "content": prompt}],
|
| 338 |
-
max_tokens=
|
| 339 |
temperature=temperature,
|
| 340 |
stream=True,
|
| 341 |
):
|
|
@@ -344,23 +386,46 @@ After writing the document, please provide a list of sources used in your respon
|
|
| 344 |
main_content += chunk
|
| 345 |
yield main_content, "" # Yield partial main content without sources
|
| 346 |
|
| 347 |
-
def get_response_from_pdf(query, model, num_calls=3, temperature=0.2):
|
|
|
|
|
|
|
| 348 |
embed = get_embeddings()
|
| 349 |
if os.path.exists("faiss_database"):
|
|
|
|
| 350 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
| 351 |
else:
|
|
|
|
| 352 |
yield "No documents available. Please upload PDF documents to answer questions."
|
| 353 |
return
|
| 354 |
|
| 355 |
retriever = database.as_retriever()
|
|
|
|
| 356 |
relevant_docs = retriever.get_relevant_documents(query)
|
| 357 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 358 |
|
| 359 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
|
|
|
| 360 |
# Use Cloudflare API with the retrieved context
|
| 361 |
for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
| 362 |
yield response
|
| 363 |
else:
|
|
|
|
| 364 |
# Use Hugging Face API
|
| 365 |
prompt = f"""Using the following context from the PDF documents:
|
| 366 |
{context_str}
|
|
@@ -370,9 +435,10 @@ Write a detailed and complete response that answers the following user question:
|
|
| 370 |
|
| 371 |
response = ""
|
| 372 |
for i in range(num_calls):
|
|
|
|
| 373 |
for message in client.chat_completion(
|
| 374 |
messages=[{"role": "user", "content": prompt}],
|
| 375 |
-
max_tokens=
|
| 376 |
temperature=temperature,
|
| 377 |
stream=True,
|
| 378 |
):
|
|
@@ -380,6 +446,8 @@ Write a detailed and complete response that answers the following user question:
|
|
| 380 |
chunk = message.choices[0].delta.content
|
| 381 |
response += chunk
|
| 382 |
yield response # Yield partial response
|
|
|
|
|
|
|
| 383 |
|
| 384 |
def vote(data: gr.LikeData):
|
| 385 |
if data.liked:
|
|
@@ -388,22 +456,44 @@ def vote(data: gr.LikeData):
|
|
| 388 |
print(f"You downvoted this response: {data.value}")
|
| 389 |
|
| 390 |
css = """
|
| 391 |
-
/*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 392 |
"""
|
| 393 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 394 |
# Define the checkbox outside the demo block
|
| 395 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 396 |
|
| 397 |
demo = gr.ChatInterface(
|
| 398 |
respond,
|
| 399 |
additional_inputs=[
|
| 400 |
-
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[
|
| 401 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
| 402 |
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
|
| 403 |
-
use_web_search
|
|
|
|
| 404 |
],
|
| 405 |
title="AI-powered Web Search and PDF Chat Assistant",
|
| 406 |
-
description="Chat with your PDFs or use web search to answer questions.",
|
| 407 |
theme=gr.themes.Soft(
|
| 408 |
primary_hue="orange",
|
| 409 |
secondary_hue="amber",
|
|
@@ -422,7 +512,6 @@ demo = gr.ChatInterface(
|
|
| 422 |
color_accent_soft_dark="transparent",
|
| 423 |
code_background_fill_dark="#140b0b"
|
| 424 |
),
|
| 425 |
-
|
| 426 |
css=css,
|
| 427 |
examples=[
|
| 428 |
["Tell me about the contents of the uploaded PDFs."],
|
|
@@ -431,6 +520,13 @@ demo = gr.ChatInterface(
|
|
| 431 |
],
|
| 432 |
cache_examples=False,
|
| 433 |
analytics_enabled=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 434 |
)
|
| 435 |
|
| 436 |
# Add file upload functionality
|
|
@@ -443,18 +539,22 @@ with demo:
|
|
| 443 |
update_button = gr.Button("Upload Document")
|
| 444 |
|
| 445 |
update_output = gr.Textbox(label="Update Status")
|
| 446 |
-
update_button.click(update_vectors, inputs=[file_input, parser_dropdown], outputs=update_output)
|
| 447 |
-
|
| 448 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 449 |
gr.Markdown(
|
| 450 |
"""
|
| 451 |
## How to use
|
| 452 |
1. Upload PDF documents using the file input at the top.
|
| 453 |
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
|
| 454 |
-
3.
|
| 455 |
-
4.
|
| 456 |
-
5.
|
| 457 |
-
6.
|
|
|
|
| 458 |
"""
|
| 459 |
)
|
| 460 |
|
|
|
|
| 33 |
MODELS = [
|
| 34 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
| 35 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 36 |
+
"@cf/meta/llama-3.1-8b-instruct",
|
| 37 |
+
"mistralai/Mistral-Nemo-Instruct-2407"
|
| 38 |
]
|
| 39 |
|
| 40 |
# Initialize LlamaParse
|
|
|
|
| 64 |
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
|
| 65 |
|
| 66 |
def get_embeddings():
|
| 67 |
+
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
|
| 68 |
|
| 69 |
def update_vectors(files, parser):
|
| 70 |
+
global uploaded_documents
|
| 71 |
+
logging.info(f"Entering update_vectors with {len(files)} files and parser: {parser}")
|
| 72 |
+
|
| 73 |
if not files:
|
| 74 |
+
logging.warning("No files provided for update_vectors")
|
| 75 |
+
return "Please upload at least one PDF file.", gr.CheckboxGroup(
|
| 76 |
+
choices=[doc["name"] for doc in uploaded_documents],
|
| 77 |
+
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
|
| 78 |
+
label="Select documents to query"
|
| 79 |
+
)
|
| 80 |
|
| 81 |
embed = get_embeddings()
|
| 82 |
total_chunks = 0
|
| 83 |
|
| 84 |
all_data = []
|
| 85 |
for file in files:
|
| 86 |
+
logging.info(f"Processing file: {file.name}")
|
| 87 |
+
try:
|
| 88 |
+
data = load_document(file, parser)
|
| 89 |
+
logging.info(f"Loaded {len(data)} chunks from {file.name}")
|
| 90 |
+
all_data.extend(data)
|
| 91 |
+
total_chunks += len(data)
|
| 92 |
+
# Append new documents instead of replacing
|
| 93 |
+
if not any(doc["name"] == file.name for doc in uploaded_documents):
|
| 94 |
+
uploaded_documents.append({"name": file.name, "selected": True})
|
| 95 |
+
logging.info(f"Added new document to uploaded_documents: {file.name}")
|
| 96 |
+
else:
|
| 97 |
+
logging.info(f"Document already exists in uploaded_documents: {file.name}")
|
| 98 |
+
except Exception as e:
|
| 99 |
+
logging.error(f"Error processing file {file.name}: {str(e)}")
|
| 100 |
+
|
| 101 |
+
logging.info(f"Total chunks processed: {total_chunks}")
|
| 102 |
|
| 103 |
if os.path.exists("faiss_database"):
|
| 104 |
+
logging.info("Updating existing FAISS database")
|
| 105 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
| 106 |
database.add_documents(all_data)
|
| 107 |
else:
|
| 108 |
+
logging.info("Creating new FAISS database")
|
| 109 |
database = FAISS.from_documents(all_data, embed)
|
| 110 |
|
| 111 |
database.save_local("faiss_database")
|
| 112 |
+
logging.info("FAISS database saved")
|
| 113 |
|
| 114 |
+
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}.", gr.CheckboxGroup(
|
| 115 |
+
choices=[doc["name"] for doc in uploaded_documents],
|
| 116 |
+
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
|
| 117 |
+
label="Select documents to query"
|
| 118 |
+
)
|
| 119 |
|
| 120 |
+
def generate_chunked_response(prompt, model, max_tokens=10000, num_calls=3, temperature=0.2, should_stop=False):
|
| 121 |
print(f"Starting generate_chunked_response with {num_calls} calls")
|
| 122 |
full_response = ""
|
| 123 |
messages = [{"role": "user", "content": prompt}]
|
|
|
|
| 243 |
|
| 244 |
return chatbot_interface(last_user_msg, history, use_web_search, model, temperature, num_calls)
|
| 245 |
|
| 246 |
+
def respond(message, history, model, temperature, num_calls, use_web_search, selected_docs):
|
| 247 |
logging.info(f"User Query: {message}")
|
| 248 |
logging.info(f"Model Used: {model}")
|
| 249 |
logging.info(f"Search Type: {'Web Search' if use_web_search else 'PDF Search'}")
|
| 250 |
|
| 251 |
+
logging.info(f"Selected Documents: {selected_docs}")
|
| 252 |
+
|
| 253 |
try:
|
| 254 |
if use_web_search:
|
| 255 |
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
|
| 256 |
response = f"{main_content}\n\n{sources}"
|
| 257 |
first_line = response.split('\n')[0] if response else ''
|
| 258 |
+
# logging.info(f"Generated Response (first line): {first_line}")
|
| 259 |
yield response
|
| 260 |
else:
|
| 261 |
embed = get_embeddings()
|
| 262 |
if os.path.exists("faiss_database"):
|
| 263 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
| 264 |
retriever = database.as_retriever()
|
| 265 |
+
|
| 266 |
+
# Filter relevant documents based on user selection
|
| 267 |
+
all_relevant_docs = retriever.get_relevant_documents(message)
|
| 268 |
+
relevant_docs = [doc for doc in all_relevant_docs if doc.metadata["source"] in selected_docs]
|
| 269 |
+
|
| 270 |
+
if not relevant_docs:
|
| 271 |
+
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
| 272 |
+
return
|
| 273 |
+
|
| 274 |
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
| 275 |
else:
|
| 276 |
context_str = "No documents available."
|
| 277 |
+
yield "No documents available. Please upload PDF documents to answer questions."
|
| 278 |
+
return
|
| 279 |
|
| 280 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
| 281 |
# Use Cloudflare API
|
|
|
|
| 285 |
yield partial_response
|
| 286 |
else:
|
| 287 |
# Use Hugging Face API
|
| 288 |
+
for partial_response in get_response_from_pdf(message, model, selected_docs, num_calls=num_calls, temperature=temperature):
|
| 289 |
first_line = partial_response.split('\n')[0] if partial_response else ''
|
| 290 |
logging.info(f"Generated Response (first line): {first_line}")
|
| 291 |
yield partial_response
|
|
|
|
| 294 |
if "microsoft/Phi-3-mini-4k-instruct" in model:
|
| 295 |
logging.info("Falling back to Mistral model due to Phi-3 error")
|
| 296 |
fallback_model = "mistralai/Mistral-7B-Instruct-v0.3"
|
| 297 |
+
yield from respond(message, history, fallback_model, temperature, num_calls, use_web_search, selected_docs)
|
| 298 |
else:
|
| 299 |
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
|
| 300 |
|
|
|
|
| 325 |
payload = {
|
| 326 |
"messages": inputs,
|
| 327 |
"stream": True,
|
| 328 |
+
"temperature": temperature,
|
| 329 |
+
"max_tokens": 32000
|
| 330 |
}
|
| 331 |
|
| 332 |
full_response = ""
|
|
|
|
| 377 |
for i in range(num_calls):
|
| 378 |
for message in client.chat_completion(
|
| 379 |
messages=[{"role": "user", "content": prompt}],
|
| 380 |
+
max_tokens=10000,
|
| 381 |
temperature=temperature,
|
| 382 |
stream=True,
|
| 383 |
):
|
|
|
|
| 386 |
main_content += chunk
|
| 387 |
yield main_content, "" # Yield partial main content without sources
|
| 388 |
|
| 389 |
+
def get_response_from_pdf(query, model, selected_docs, num_calls=3, temperature=0.2):
|
| 390 |
+
logging.info(f"Entering get_response_from_pdf with query: {query}, model: {model}, selected_docs: {selected_docs}")
|
| 391 |
+
|
| 392 |
embed = get_embeddings()
|
| 393 |
if os.path.exists("faiss_database"):
|
| 394 |
+
logging.info("Loading FAISS database")
|
| 395 |
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
| 396 |
else:
|
| 397 |
+
logging.warning("No FAISS database found")
|
| 398 |
yield "No documents available. Please upload PDF documents to answer questions."
|
| 399 |
return
|
| 400 |
|
| 401 |
retriever = database.as_retriever()
|
| 402 |
+
logging.info(f"Retrieving relevant documents for query: {query}")
|
| 403 |
relevant_docs = retriever.get_relevant_documents(query)
|
| 404 |
+
logging.info(f"Number of relevant documents retrieved: {len(relevant_docs)}")
|
| 405 |
+
|
| 406 |
+
# Filter relevant_docs based on selected documents
|
| 407 |
+
filtered_docs = [doc for doc in relevant_docs if doc.metadata["source"] in selected_docs]
|
| 408 |
+
logging.info(f"Number of filtered documents: {len(filtered_docs)}")
|
| 409 |
+
|
| 410 |
+
if not filtered_docs:
|
| 411 |
+
logging.warning(f"No relevant information found in the selected documents: {selected_docs}")
|
| 412 |
+
yield "No relevant information found in the selected documents. Please try selecting different documents or rephrasing your query."
|
| 413 |
+
return
|
| 414 |
+
|
| 415 |
+
for doc in filtered_docs:
|
| 416 |
+
logging.info(f"Document source: {doc.metadata['source']}")
|
| 417 |
+
logging.info(f"Document content preview: {doc.page_content[:100]}...") # Log first 100 characters of each document
|
| 418 |
+
|
| 419 |
+
context_str = "\n".join([doc.page_content for doc in filtered_docs])
|
| 420 |
+
logging.info(f"Total context length: {len(context_str)}")
|
| 421 |
|
| 422 |
if model == "@cf/meta/llama-3.1-8b-instruct":
|
| 423 |
+
logging.info("Using Cloudflare API")
|
| 424 |
# Use Cloudflare API with the retrieved context
|
| 425 |
for response in get_response_from_cloudflare(prompt="", context=context_str, query=query, num_calls=num_calls, temperature=temperature, search_type="pdf"):
|
| 426 |
yield response
|
| 427 |
else:
|
| 428 |
+
logging.info("Using Hugging Face API")
|
| 429 |
# Use Hugging Face API
|
| 430 |
prompt = f"""Using the following context from the PDF documents:
|
| 431 |
{context_str}
|
|
|
|
| 435 |
|
| 436 |
response = ""
|
| 437 |
for i in range(num_calls):
|
| 438 |
+
logging.info(f"API call {i+1}/{num_calls}")
|
| 439 |
for message in client.chat_completion(
|
| 440 |
messages=[{"role": "user", "content": prompt}],
|
| 441 |
+
max_tokens=10000,
|
| 442 |
temperature=temperature,
|
| 443 |
stream=True,
|
| 444 |
):
|
|
|
|
| 446 |
chunk = message.choices[0].delta.content
|
| 447 |
response += chunk
|
| 448 |
yield response # Yield partial response
|
| 449 |
+
|
| 450 |
+
logging.info("Finished generating response")
|
| 451 |
|
| 452 |
def vote(data: gr.LikeData):
|
| 453 |
if data.liked:
|
|
|
|
| 456 |
print(f"You downvoted this response: {data.value}")
|
| 457 |
|
| 458 |
css = """
|
| 459 |
+
/* Fine-tune chatbox size */
|
| 460 |
+
.chatbot-container {
|
| 461 |
+
height: 600px !important;
|
| 462 |
+
width: 100% !important;
|
| 463 |
+
}
|
| 464 |
+
.chatbot-container > div {
|
| 465 |
+
height: 100%;
|
| 466 |
+
width: 100%;
|
| 467 |
+
}
|
| 468 |
"""
|
| 469 |
|
| 470 |
+
uploaded_documents = []
|
| 471 |
+
|
| 472 |
+
def display_documents():
|
| 473 |
+
return gr.CheckboxGroup(
|
| 474 |
+
choices=[doc["name"] for doc in uploaded_documents],
|
| 475 |
+
value=[doc["name"] for doc in uploaded_documents if doc["selected"]],
|
| 476 |
+
label="Select documents to query"
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
# Define the checkbox outside the demo block
|
| 480 |
+
document_selector = gr.CheckboxGroup(label="Select documents to query")
|
| 481 |
+
|
| 482 |
+
use_web_search = gr.Checkbox(label="Use Web Search", value=True)
|
| 483 |
+
|
| 484 |
+
custom_placeholder = "Ask a question (Note: You can toggle between Web Search and PDF Chat in Additional Inputs below)"
|
| 485 |
|
| 486 |
demo = gr.ChatInterface(
|
| 487 |
respond,
|
| 488 |
additional_inputs=[
|
| 489 |
+
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
|
| 490 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
| 491 |
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
|
| 492 |
+
use_web_search,
|
| 493 |
+
document_selector
|
| 494 |
],
|
| 495 |
title="AI-powered Web Search and PDF Chat Assistant",
|
| 496 |
+
description="Chat with your PDFs or use web search to answer questions. Toggle between Web Search and PDF Chat in Additional Inputs below.",
|
| 497 |
theme=gr.themes.Soft(
|
| 498 |
primary_hue="orange",
|
| 499 |
secondary_hue="amber",
|
|
|
|
| 512 |
color_accent_soft_dark="transparent",
|
| 513 |
code_background_fill_dark="#140b0b"
|
| 514 |
),
|
|
|
|
| 515 |
css=css,
|
| 516 |
examples=[
|
| 517 |
["Tell me about the contents of the uploaded PDFs."],
|
|
|
|
| 520 |
],
|
| 521 |
cache_examples=False,
|
| 522 |
analytics_enabled=False,
|
| 523 |
+
textbox=gr.Textbox(placeholder=custom_placeholder, container=False, scale=7),
|
| 524 |
+
chatbot = gr.Chatbot(
|
| 525 |
+
show_copy_button=True,
|
| 526 |
+
likeable=True,
|
| 527 |
+
layout="bubble",
|
| 528 |
+
height=400,
|
| 529 |
+
)
|
| 530 |
)
|
| 531 |
|
| 532 |
# Add file upload functionality
|
|
|
|
| 539 |
update_button = gr.Button("Upload Document")
|
| 540 |
|
| 541 |
update_output = gr.Textbox(label="Update Status")
|
|
|
|
|
|
|
| 542 |
|
| 543 |
+
# Update both the output text and the document selector
|
| 544 |
+
update_button.click(update_vectors,
|
| 545 |
+
inputs=[file_input, parser_dropdown],
|
| 546 |
+
outputs=[update_output, document_selector])
|
| 547 |
+
|
| 548 |
gr.Markdown(
|
| 549 |
"""
|
| 550 |
## How to use
|
| 551 |
1. Upload PDF documents using the file input at the top.
|
| 552 |
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
|
| 553 |
+
3. Select the documents you want to query using the checkboxes.
|
| 554 |
+
4. Ask questions in the chat interface.
|
| 555 |
+
5. Toggle "Use Web Search" to switch between PDF chat and web search.
|
| 556 |
+
6. Adjust Temperature and Number of API Calls to fine-tune the response generation.
|
| 557 |
+
7. Use the provided examples or ask your own questions.
|
| 558 |
"""
|
| 559 |
)
|
| 560 |
|