Update app.py
Browse files
app.py
CHANGED
|
@@ -1,343 +1,90 @@
|
|
| 1 |
-
import fitz # PyMuPDF
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import requests
|
| 4 |
-
from bs4 import BeautifulSoup
|
| 5 |
-
import urllib.parse
|
| 6 |
-
import random
|
| 7 |
import os
|
| 8 |
-
|
| 9 |
-
import
|
| 10 |
-
import
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
result_block = soup.find_all("div", attrs={"class": "g"})
|
| 98 |
-
if not result_block:
|
| 99 |
-
print("No more results found.")
|
| 100 |
-
break
|
| 101 |
-
for result in result_block:
|
| 102 |
-
link = result.find("a", href=True)
|
| 103 |
-
if link:
|
| 104 |
-
link = link["href"]
|
| 105 |
-
print(f"Found link: {link}")
|
| 106 |
-
try:
|
| 107 |
-
webpage = session.get(link, headers=headers, timeout=timeout)
|
| 108 |
-
webpage.raise_for_status()
|
| 109 |
-
visible_text = extract_text_from_webpage(webpage.text)
|
| 110 |
-
if len(visible_text) > max_chars_per_page:
|
| 111 |
-
visible_text = visible_text[:max_chars_per_page] + "..."
|
| 112 |
-
all_results.append({"link": link, "text": visible_text})
|
| 113 |
-
except requests.exceptions.RequestException as e:
|
| 114 |
-
print(f"Error fetching or processing {link}: {e}")
|
| 115 |
-
all_results.append({"link": link, "text": None})
|
| 116 |
-
else:
|
| 117 |
-
print("No link found in result.")
|
| 118 |
-
all_results.append({"link": None, "text": None})
|
| 119 |
-
start += len(result_block)
|
| 120 |
-
print(f"Total results fetched: {len(all_results)}")
|
| 121 |
-
return all_results
|
| 122 |
-
|
| 123 |
-
# Function to format the prompt for the Hugging Face API
|
| 124 |
-
def format_prompt(query, search_results, instructions):
|
| 125 |
-
formatted_results = ""
|
| 126 |
-
for result in search_results:
|
| 127 |
-
link = result["link"]
|
| 128 |
-
text = result["text"]
|
| 129 |
-
if link:
|
| 130 |
-
formatted_results += f"URL: {link}\nContent: {text}\n{'-' * 80}\n"
|
| 131 |
-
else:
|
| 132 |
-
formatted_results += "No link found.\n" + '-' * 80 + '\n'
|
| 133 |
-
|
| 134 |
-
prompt = f"{instructions}User Query: {query}\n\nWeb Search Results:\n{formatted_results}\n\nAssistant:"
|
| 135 |
-
return prompt
|
| 136 |
-
|
| 137 |
-
# Function to generate text using Hugging Face API
|
| 138 |
-
def generate_text(input_text, temperature=0.7, repetition_penalty=1.0, top_p=0.9):
|
| 139 |
-
print("Generating text using Hugging Face API...")
|
| 140 |
-
endpoint = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3"
|
| 141 |
-
headers = {
|
| 142 |
-
"Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}", # Use the environment variable
|
| 143 |
-
"Content-Type": "application/json"
|
| 144 |
-
}
|
| 145 |
-
data = {
|
| 146 |
-
"inputs": input_text,
|
| 147 |
-
"parameters": {
|
| 148 |
-
"max_new_tokens": 8000, # Adjust as needed
|
| 149 |
-
"temperature": temperature,
|
| 150 |
-
"repetition_penalty": repetition_penalty,
|
| 151 |
-
"top_p": top_p
|
| 152 |
-
}
|
| 153 |
-
}
|
| 154 |
-
|
| 155 |
-
try:
|
| 156 |
-
response = requests.post(endpoint, headers=headers, json=data)
|
| 157 |
-
response.raise_for_status()
|
| 158 |
-
|
| 159 |
-
# Check if response is JSON
|
| 160 |
-
try:
|
| 161 |
-
json_data = response.json()
|
| 162 |
-
except ValueError:
|
| 163 |
-
print("Response is not JSON.")
|
| 164 |
-
return None
|
| 165 |
-
|
| 166 |
-
# Extract generated text from response JSON
|
| 167 |
-
if isinstance(json_data, list):
|
| 168 |
-
# Handle list response (if applicable for your use case)
|
| 169 |
-
generated_text = json_data[0].get("generated_text") if json_data else None
|
| 170 |
-
elif isinstance(json_data, dict):
|
| 171 |
-
# Handle dictionary response
|
| 172 |
-
generated_text = json_data.get("generated_text")
|
| 173 |
-
else:
|
| 174 |
-
print("Unexpected response format.")
|
| 175 |
-
return None
|
| 176 |
-
|
| 177 |
-
if generated_text is not None:
|
| 178 |
-
print("Text generation complete using Hugging Face API.")
|
| 179 |
-
print(f"Generated text: {generated_text}") # Debugging line
|
| 180 |
-
return generated_text
|
| 181 |
-
else:
|
| 182 |
-
print("Generated text not found in response.")
|
| 183 |
-
return None
|
| 184 |
-
|
| 185 |
-
except requests.exceptions.RequestException as e:
|
| 186 |
-
print(f"Error generating text using Hugging Face API: {e}")
|
| 187 |
-
return None
|
| 188 |
-
|
| 189 |
-
# Function to read and extract text from a PDF
|
| 190 |
-
def read_pdf(file_obj):
|
| 191 |
-
with fitz.open(file_obj.name) as document:
|
| 192 |
-
text = ""
|
| 193 |
-
for page_num in range(document.page_count):
|
| 194 |
-
page = document.load_page(page_num)
|
| 195 |
-
text += page.get_text()
|
| 196 |
-
return text
|
| 197 |
-
|
| 198 |
-
# Function to format the prompt with instructions for text generation
|
| 199 |
-
def format_prompt_with_instructions(text, instructions):
|
| 200 |
-
prompt = f"{instructions}{text}\n\nAssistant:"
|
| 201 |
-
return prompt
|
| 202 |
-
|
| 203 |
-
# Function to save text to a PDF
|
| 204 |
-
def save_text_to_pdf(text, output_path):
|
| 205 |
-
print(f"Saving text to PDF at {output_path}...")
|
| 206 |
-
doc = fitz.open() # Create a new PDF document
|
| 207 |
-
page = doc.new_page() # Create a new page
|
| 208 |
-
|
| 209 |
-
# Set the page margins
|
| 210 |
-
margin = 50 # 50 points margin
|
| 211 |
-
page_width = page.rect.width
|
| 212 |
-
page_height = page.rect.height
|
| 213 |
-
text_width = page_width - 2 * margin
|
| 214 |
-
text_height = page_height - 2 * margin
|
| 215 |
-
|
| 216 |
-
# Define font size and line spacing
|
| 217 |
-
font_size = 9
|
| 218 |
-
line_spacing = 1 * font_size
|
| 219 |
-
fontname = "times-roman" # Use a supported font name
|
| 220 |
-
|
| 221 |
-
# Process the text into lines that fit within the text_width
|
| 222 |
-
lines = []
|
| 223 |
-
current_line = ""
|
| 224 |
-
current_line_width = 0
|
| 225 |
-
words = text.split(" ")
|
| 226 |
-
for word in words:
|
| 227 |
-
word_width = fitz.get_text_length(word, fontname, font_size)
|
| 228 |
-
if current_line_width + word_width <= text_width:
|
| 229 |
-
current_line += word + " "
|
| 230 |
-
current_line_width += word_width + fitz.get_text_length(" ", fontname, font_size)
|
| 231 |
-
else:
|
| 232 |
-
lines.append(current_line.strip())
|
| 233 |
-
current_line = word + " "
|
| 234 |
-
current_line_width = word_width + fitz.get_text_length(" ", fontname, font_size)
|
| 235 |
-
if current_line:
|
| 236 |
-
lines.append(current_line.strip())
|
| 237 |
-
|
| 238 |
-
# Add the lines to the page with margins
|
| 239 |
-
x = margin
|
| 240 |
-
y = margin
|
| 241 |
-
for line in lines:
|
| 242 |
-
if y + line_spacing > text_height:
|
| 243 |
-
# Create a new page if text exceeds the page height
|
| 244 |
-
page = doc.new_page()
|
| 245 |
-
y = margin # Reset y-coordinate for the new page
|
| 246 |
-
page.insert_text((x, y), line, fontname=fontname, fontsize=font_size)
|
| 247 |
-
y += line_spacing
|
| 248 |
-
|
| 249 |
-
doc.save(output_path) # Save the PDF to the specified output path
|
| 250 |
-
print(f"Text saved to PDF at {output_path}")
|
| 251 |
-
|
| 252 |
-
# Function to process the PDF or search query and generate a summary
|
| 253 |
-
def process_input(query_or_file, is_pdf, instructions, temperature, top_p, repetition_penalty):
|
| 254 |
-
load_dotenv() # Load environment variables from .env file
|
| 255 |
-
|
| 256 |
-
HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
| 257 |
-
|
| 258 |
-
if is_pdf:
|
| 259 |
-
print(f"Processing PDF: {query_or_file.name}")
|
| 260 |
-
input_text = read_pdf(query_or_file)
|
| 261 |
-
else:
|
| 262 |
-
print(f"Processing search query: {query_or_file}")
|
| 263 |
-
search_results = google_search(query_or_file)
|
| 264 |
-
input_text = "\n\n".join(result["text"] for result in search_results if result["text"])
|
| 265 |
-
|
| 266 |
-
# Split the input text into smaller chunks to fit within the token limit
|
| 267 |
-
chunk_size = 1024 # Adjust as needed to stay within the token limit
|
| 268 |
-
text_chunks = [input_text[i:i + chunk_size] for i in range(0, len(input_text), chunk_size)]
|
| 269 |
-
print(f"Total number of chunks: {len(text_chunks)}")
|
| 270 |
-
|
| 271 |
-
# Generate summaries for each chunk and concatenate them
|
| 272 |
-
concatenated_summary = ""
|
| 273 |
-
for chunk in text_chunks:
|
| 274 |
-
prompt = format_prompt_with_instructions(chunk, instructions)
|
| 275 |
-
chunk_summary = generate_text(prompt, temperature, repetition_penalty, top_p)
|
| 276 |
-
concatenated_summary += f"{chunk_summary}\n\n"
|
| 277 |
-
|
| 278 |
-
print("Final concatenated summary generated.")
|
| 279 |
-
return concatenated_summary
|
| 280 |
-
|
| 281 |
-
# Function to clear cache
|
| 282 |
-
def clear_cache():
|
| 283 |
-
try:
|
| 284 |
-
# Clear Gradio cache
|
| 285 |
-
cache_dir = tempfile.gettempdir()
|
| 286 |
-
shutil.rmtree(os.path.join(cache_dir, "gradio"), ignore_errors=True)
|
| 287 |
-
|
| 288 |
-
# Clear any custom cache you might have
|
| 289 |
-
# For example, if you're caching PDF files or search results:
|
| 290 |
-
if os.path.exists("output_summary.pdf"):
|
| 291 |
-
os.remove("output_summary.pdf")
|
| 292 |
-
|
| 293 |
-
# Add any other cache clearing operations here
|
| 294 |
-
|
| 295 |
-
print("Cache cleared successfully.")
|
| 296 |
-
return "Cache cleared successfully."
|
| 297 |
-
except Exception as e:
|
| 298 |
-
print(f"Error clearing cache: {e}")
|
| 299 |
-
return f"Error clearing cache: {e}"
|
| 300 |
-
|
| 301 |
-
def summarization_interface():
|
| 302 |
-
with gr.Blocks() as demo:
|
| 303 |
-
gr.Markdown("# PDF and Web Summarization Tool")
|
| 304 |
-
|
| 305 |
-
with gr.Tab("Summarize PDF"):
|
| 306 |
-
pdf_file = gr.File(label="Upload PDF", file_types=[".pdf"])
|
| 307 |
-
pdf_instructions = gr.Textbox(label="Instructions for Summarization", placeholder="Enter instructions for summarization", lines=3)
|
| 308 |
-
pdf_temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.7, step=0.01)
|
| 309 |
-
pdf_top_p = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.01)
|
| 310 |
-
pdf_repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=0.5, maximum=2.0, value=1.0, step=0.1)
|
| 311 |
-
pdf_summary_output = gr.Textbox(label="Concatenated Summary Output")
|
| 312 |
-
pdf_summarize_button = gr.Button("Generate Summary")
|
| 313 |
-
pdf_clear_cache_button = gr.Button("Clear Cache")
|
| 314 |
-
|
| 315 |
-
with gr.Tab("Summarize Web Search"):
|
| 316 |
-
search_query = gr.Textbox(label="Enter Search Query", placeholder="Enter search query")
|
| 317 |
-
search_instructions = gr.Textbox(label="Instructions for Summarization", placeholder="Enter instructions for summarization", lines=3)
|
| 318 |
-
search_temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.7, step=0.01)
|
| 319 |
-
search_top_p = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.01)
|
| 320 |
-
search_repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=0.5, maximum=2.0, value=1.0, step=0.1)
|
| 321 |
-
search_summary_output = gr.Textbox(label="Concatenated Summary Output")
|
| 322 |
-
search_summarize_button = gr.Button("Generate Summary")
|
| 323 |
-
search_clear_cache_button = gr.Button("Clear Cache")
|
| 324 |
-
|
| 325 |
-
# Bind functions to button clicks
|
| 326 |
-
pdf_summarize_button.click(
|
| 327 |
-
fn=lambda file, instructions, temperature, top_p, repetition_penalty: generate_and_save_summary(file, True, instructions, temperature, top_p, repetition_penalty),
|
| 328 |
-
inputs=[pdf_file, pdf_instructions, pdf_temperature, pdf_top_p, pdf_repetition_penalty],
|
| 329 |
-
outputs=[pdf_summary_output]
|
| 330 |
-
)
|
| 331 |
-
search_summarize_button.click(
|
| 332 |
-
fn=lambda query, instructions, temperature, top_p, repetition_penalty: generate_and_save_summary(query, False, instructions, temperature, top_p, repetition_penalty),
|
| 333 |
-
inputs=[search_query, search_instructions, search_temperature, search_top_p, search_repetition_penalty],
|
| 334 |
-
outputs=[search_summary_output]
|
| 335 |
-
)
|
| 336 |
-
pdf_clear_cache_button.click(fn=clear_cache, inputs=None, outputs=pdf_summary_output)
|
| 337 |
-
search_clear_cache_button.click(fn=clear_cache, inputs=None, outputs=search_summary_output)
|
| 338 |
-
|
| 339 |
-
return demo
|
| 340 |
-
|
| 341 |
-
# Launch the Gradio interface
|
| 342 |
-
demo = summarization_interface()
|
| 343 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import json
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from tempfile import NamedTemporaryFile
|
| 5 |
+
|
| 6 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 7 |
+
from langchain_community.vectorstores import FAISS
|
| 8 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 9 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 10 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 11 |
+
from langchain_community.llms import HuggingFaceHub
|
| 12 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 13 |
+
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
| 14 |
+
|
| 15 |
+
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
| 16 |
+
|
| 17 |
+
def load_and_split_document(file):
|
| 18 |
+
"""Loads and splits the document into pages."""
|
| 19 |
+
loader = PyPDFLoader(file.name)
|
| 20 |
+
data = loader.load_and_split()
|
| 21 |
+
return data
|
| 22 |
+
|
| 23 |
+
def get_embeddings():
|
| 24 |
+
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
| 25 |
+
|
| 26 |
+
def create_database(data, embeddings):
|
| 27 |
+
db = FAISS.from_documents(data, embeddings)
|
| 28 |
+
db.save_local("faiss_database")
|
| 29 |
+
|
| 30 |
+
prompt = """
|
| 31 |
+
Answer the question based only on the following context:
|
| 32 |
+
{context}
|
| 33 |
+
Question: {question}
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
def get_model():
|
| 37 |
+
return HuggingFaceHub(
|
| 38 |
+
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
|
| 39 |
+
model_kwargs={"temperature": 0.5, "max_length": 512},
|
| 40 |
+
huggingfacehub_api_token=huggingface_token
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
def response(database, model, question):
|
| 44 |
+
prompt_val = ChatPromptTemplate.from_template(prompt)
|
| 45 |
+
retriever = database.as_retriever()
|
| 46 |
+
parser = StrOutputParser()
|
| 47 |
+
chain = (
|
| 48 |
+
{'context': retriever, 'question': RunnablePassthrough()}
|
| 49 |
+
| prompt_val
|
| 50 |
+
| model
|
| 51 |
+
| parser
|
| 52 |
+
)
|
| 53 |
+
ans = chain.invoke(question)
|
| 54 |
+
return ans
|
| 55 |
+
|
| 56 |
+
def update_vectors(file):
|
| 57 |
+
if file is None:
|
| 58 |
+
return "Please upload a PDF file."
|
| 59 |
+
data = load_and_split_document(file)
|
| 60 |
+
embed = get_embeddings()
|
| 61 |
+
create_database(data, embed)
|
| 62 |
+
return "Vector store updated successfully."
|
| 63 |
+
|
| 64 |
+
def ask_question(question):
|
| 65 |
+
if not question:
|
| 66 |
+
return "Please enter a question."
|
| 67 |
+
embed = get_embeddings()
|
| 68 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
| 69 |
+
model = get_model()
|
| 70 |
+
return response(database, model, question)
|
| 71 |
+
|
| 72 |
+
with gr.Blocks() as demo:
|
| 73 |
+
gr.Markdown("# Chat with your PDF documents")
|
| 74 |
+
|
| 75 |
+
with gr.Row():
|
| 76 |
+
file_input = gr.File(label="Upload your PDF document", file_types=[".pdf"])
|
| 77 |
+
update_button = gr.Button("Update Vector Store")
|
| 78 |
+
|
| 79 |
+
update_output = gr.Textbox(label="Update Status")
|
| 80 |
+
update_button.click(update_vectors, inputs=[file_input], outputs=update_output)
|
| 81 |
+
|
| 82 |
+
with gr.Row():
|
| 83 |
+
question_input = gr.Textbox(label="Ask a question about your documents")
|
| 84 |
+
submit_button = gr.Button("Submit")
|
| 85 |
+
|
| 86 |
+
answer_output = gr.Textbox(label="Answer")
|
| 87 |
+
submit_button.click(ask_question, inputs=[question_input], outputs=answer_output)
|
| 88 |
+
|
| 89 |
+
if __name__ == "__main__":
|
| 90 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|