Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import os
|
| 2 |
import logging
|
| 3 |
import asyncio
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
from huggingface_hub import InferenceClient
|
| 6 |
from langchain.embeddings import HuggingFaceEmbeddings
|
|
@@ -55,7 +56,16 @@ def create_web_search_vectors(search_results):
|
|
| 55 |
logging.info(f"Created vectors for {len(documents)} search results.")
|
| 56 |
return FAISS.from_documents(documents, embed)
|
| 57 |
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
search_results = duckduckgo_search(query)
|
| 60 |
|
| 61 |
if not search_results:
|
|
@@ -66,14 +76,7 @@ async def get_response_with_search(query, system_prompt, model, use_embeddings,
|
|
| 66 |
sources = [result['href'] for result in search_results if 'href' in result]
|
| 67 |
source_list_str = "\n".join(sources)
|
| 68 |
|
| 69 |
-
|
| 70 |
-
web_search_database = create_web_search_vectors(search_results)
|
| 71 |
-
retriever = web_search_database.as_retriever(search_kwargs={"k": 5})
|
| 72 |
-
relevant_docs = retriever.get_relevant_documents(query)
|
| 73 |
-
context = "\n".join([doc.page_content for doc in relevant_docs])
|
| 74 |
-
else:
|
| 75 |
-
context = "\n".join([f"{result['title']}\n{result['body']}" for result in search_results])
|
| 76 |
-
|
| 77 |
logging.info(f"Context created for query: {query}")
|
| 78 |
|
| 79 |
user_message = f"""Using the following context from web search results:
|
|
@@ -81,9 +84,6 @@ async def get_response_with_search(query, system_prompt, model, use_embeddings,
|
|
| 81 |
|
| 82 |
Write a detailed and complete research document that fulfills the following user request: '{query}'."""
|
| 83 |
|
| 84 |
-
client = InferenceClient(model, token=huggingface_token)
|
| 85 |
-
full_response = ""
|
| 86 |
-
|
| 87 |
messages = [
|
| 88 |
{"role": "system", "content": system_prompt},
|
| 89 |
{"role": "user", "content": user_message}
|
|
@@ -92,50 +92,38 @@ Write a detailed and complete research document that fulfills the following user
|
|
| 92 |
if history:
|
| 93 |
messages = history + messages
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
try:
|
| 98 |
-
response_stream = client.chat_completion(
|
| 99 |
-
messages=messages,
|
| 100 |
-
max_tokens=6000,
|
| 101 |
-
temperature=temperature,
|
| 102 |
-
stream=True,
|
| 103 |
-
top_p=0.8,
|
| 104 |
-
)
|
| 105 |
-
|
| 106 |
-
if response_stream is None:
|
| 107 |
-
logging.error(f"API call {call + 1} returned None")
|
| 108 |
-
yield "The API returned an empty response. Please try again.", ""
|
| 109 |
-
continue
|
| 110 |
-
|
| 111 |
-
for response in response_stream:
|
| 112 |
-
if isinstance(response, dict) and "choices" in response:
|
| 113 |
-
for choice in response["choices"]:
|
| 114 |
-
if "delta" in choice and "content" in choice["delta"]:
|
| 115 |
-
chunk = choice["delta"]["content"]
|
| 116 |
-
full_response += chunk
|
| 117 |
-
yield full_response, ""
|
| 118 |
-
else:
|
| 119 |
-
logging.error(f"Unexpected response format in API call {call + 1}: {response}")
|
| 120 |
-
|
| 121 |
-
if full_response:
|
| 122 |
-
break # If we got a valid response, exit the loop
|
| 123 |
-
|
| 124 |
-
except Exception as e:
|
| 125 |
-
logging.error(f"Error in API call {call + 1}: {str(e)}")
|
| 126 |
-
if "422 Client Error" in str(e):
|
| 127 |
-
logging.warning("Received 422 Client Error. Adjusting request parameters.")
|
| 128 |
-
# You might want to adjust parameters here, e.g., reduce max_tokens
|
| 129 |
-
yield f"An error occurred during API call {call + 1}. Retrying...", ""
|
| 130 |
-
|
| 131 |
-
await asyncio.sleep(1) # 1 second delay between calls
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
if not full_response:
|
| 141 |
logging.warning("No response generated from the model")
|
|
@@ -143,18 +131,12 @@ Write a detailed and complete research document that fulfills the following user
|
|
| 143 |
else:
|
| 144 |
yield f"{full_response}\n\nSources:\n{source_list_str}", ""
|
| 145 |
|
| 146 |
-
|
| 147 |
-
logging.info(f"User Query: {message}")
|
| 148 |
-
logging.info(f"Model Used: {model}")
|
| 149 |
-
logging.info(f"Temperature: {temperature}")
|
| 150 |
-
logging.info(f"Number of API Calls: {num_calls}")
|
| 151 |
-
logging.info(f"Use Embeddings: {use_embeddings}")
|
| 152 |
-
logging.info(f"System Prompt: {system_prompt}")
|
| 153 |
-
logging.info(f"History: {history}") # Log the history for debugging
|
| 154 |
-
|
| 155 |
-
# Convert gradio history to the format expected by get_response_with_search
|
| 156 |
chat_history = []
|
| 157 |
-
if history:
|
|
|
|
|
|
|
|
|
|
| 158 |
for entry in history:
|
| 159 |
if isinstance(entry, (list, tuple)) and len(entry) == 2:
|
| 160 |
human, assistant = entry
|
|
@@ -164,10 +146,20 @@ async def respond(message, system_prompt, history, model, temperature, num_calls
|
|
| 164 |
elif isinstance(entry, str):
|
| 165 |
# If it's a string, assume it's a user message
|
| 166 |
chat_history.append({"role": "user", "content": entry})
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
try:
|
| 170 |
-
full_response = ""
|
| 171 |
async for main_content, sources in get_response_with_search(
|
| 172 |
message,
|
| 173 |
system_prompt,
|
|
@@ -177,16 +169,8 @@ async def respond(message, system_prompt, history, model, temperature, num_calls
|
|
| 177 |
num_calls=num_calls,
|
| 178 |
temperature=temperature
|
| 179 |
):
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
yield main_content
|
| 183 |
-
else:
|
| 184 |
-
# Otherwise, yield only the new content
|
| 185 |
-
new_content = main_content[len(full_response):]
|
| 186 |
-
full_response = main_content
|
| 187 |
-
yield new_content
|
| 188 |
-
|
| 189 |
-
# Yield the sources as a separate message
|
| 190 |
if sources:
|
| 191 |
yield f"\n\nSources:\n{sources}"
|
| 192 |
|
|
@@ -213,16 +197,8 @@ css = """
|
|
| 213 |
def create_gradio_interface():
|
| 214 |
custom_placeholder = "Enter your question here for web search."
|
| 215 |
|
| 216 |
-
async def wrapped_respond(*args):
|
| 217 |
-
try:
|
| 218 |
-
async for response in respond(*args):
|
| 219 |
-
yield response
|
| 220 |
-
except Exception as e:
|
| 221 |
-
logging.error(f"Error in wrapped_respond: {str(e)}")
|
| 222 |
-
yield f"An error occurred: {str(e)}"
|
| 223 |
-
|
| 224 |
demo = gr.ChatInterface(
|
| 225 |
-
fn=
|
| 226 |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False),
|
| 227 |
additional_inputs=[
|
| 228 |
gr.Textbox(value=DEFAULT_SYSTEM_PROMPT, lines=6, label="System Prompt", placeholder="Enter your system prompt here"),
|
|
@@ -268,4 +244,4 @@ def create_gradio_interface():
|
|
| 268 |
|
| 269 |
if __name__ == "__main__":
|
| 270 |
demo = create_gradio_interface()
|
| 271 |
-
demo.launch(share=True)
|
|
|
|
| 1 |
import os
|
| 2 |
import logging
|
| 3 |
import asyncio
|
| 4 |
+
from typing import AsyncGenerator, Tuple
|
| 5 |
import gradio as gr
|
| 6 |
from huggingface_hub import InferenceClient
|
| 7 |
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
|
| 56 |
logging.info(f"Created vectors for {len(documents)} search results.")
|
| 57 |
return FAISS.from_documents(documents, embed)
|
| 58 |
|
| 59 |
+
def create_context(search_results, use_embeddings, query):
|
| 60 |
+
if use_embeddings:
|
| 61 |
+
web_search_database = create_web_search_vectors(search_results)
|
| 62 |
+
retriever = web_search_database.as_retriever(search_kwargs={"k": 5})
|
| 63 |
+
relevant_docs = retriever.get_relevant_documents(query)
|
| 64 |
+
return "\n".join([doc.page_content for doc in relevant_docs])
|
| 65 |
+
else:
|
| 66 |
+
return "\n".join([f"{result['title']}\n{result['body']}" for result in search_results])
|
| 67 |
+
|
| 68 |
+
async def get_response_with_search(query: str, system_prompt: str, model: str, use_embeddings: bool, history=None, num_calls: int = 3, temperature: float = 0.2) -> AsyncGenerator[Tuple[str, str], None]:
|
| 69 |
search_results = duckduckgo_search(query)
|
| 70 |
|
| 71 |
if not search_results:
|
|
|
|
| 76 |
sources = [result['href'] for result in search_results if 'href' in result]
|
| 77 |
source_list_str = "\n".join(sources)
|
| 78 |
|
| 79 |
+
context = create_context(search_results, use_embeddings, query)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
logging.info(f"Context created for query: {query}")
|
| 81 |
|
| 82 |
user_message = f"""Using the following context from web search results:
|
|
|
|
| 84 |
|
| 85 |
Write a detailed and complete research document that fulfills the following user request: '{query}'."""
|
| 86 |
|
|
|
|
|
|
|
|
|
|
| 87 |
messages = [
|
| 88 |
{"role": "system", "content": system_prompt},
|
| 89 |
{"role": "user", "content": user_message}
|
|
|
|
| 92 |
if history:
|
| 93 |
messages = history + messages
|
| 94 |
|
| 95 |
+
client = InferenceClient(model, token=huggingface_token)
|
| 96 |
+
full_response = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
+
for call in range(num_calls):
|
| 99 |
+
try:
|
| 100 |
+
response = await asyncio.to_thread(
|
| 101 |
+
client.chat_completion,
|
| 102 |
+
messages=messages,
|
| 103 |
+
max_tokens=6000,
|
| 104 |
+
temperature=temperature,
|
| 105 |
+
top_p=0.8,
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
if response is None or not isinstance(response, dict) or 'choices' not in response:
|
| 109 |
+
logging.error(f"API call {call + 1} returned an invalid response: {response}")
|
| 110 |
+
if call == num_calls - 1:
|
| 111 |
+
yield "The API returned an invalid response. Please try again later.", ""
|
| 112 |
+
continue
|
| 113 |
+
|
| 114 |
+
new_content = response['choices'][0]['message']['content']
|
| 115 |
+
full_response += new_content
|
| 116 |
+
yield full_response, ""
|
| 117 |
+
|
| 118 |
+
if full_response:
|
| 119 |
+
break # If we got a valid response, exit the loop
|
| 120 |
+
|
| 121 |
+
except Exception as e:
|
| 122 |
+
logging.error(f"Error in API call {call + 1}: {str(e)}")
|
| 123 |
+
if call == num_calls - 1:
|
| 124 |
+
yield f"An error occurred during API calls: {str(e)}. Please try again later.", ""
|
| 125 |
+
|
| 126 |
+
await asyncio.sleep(1) # 1 second delay between calls
|
| 127 |
|
| 128 |
if not full_response:
|
| 129 |
logging.warning("No response generated from the model")
|
|
|
|
| 131 |
else:
|
| 132 |
yield f"{full_response}\n\nSources:\n{source_list_str}", ""
|
| 133 |
|
| 134 |
+
def process_history(history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
chat_history = []
|
| 136 |
+
if isinstance(history, str):
|
| 137 |
+
# If history is a string (like the system prompt), add it as a system message
|
| 138 |
+
chat_history.append({"role": "system", "content": history})
|
| 139 |
+
elif isinstance(history, list):
|
| 140 |
for entry in history:
|
| 141 |
if isinstance(entry, (list, tuple)) and len(entry) == 2:
|
| 142 |
human, assistant = entry
|
|
|
|
| 146 |
elif isinstance(entry, str):
|
| 147 |
# If it's a string, assume it's a user message
|
| 148 |
chat_history.append({"role": "user", "content": entry})
|
| 149 |
+
return chat_history
|
| 150 |
+
|
| 151 |
+
async def respond(message, system_prompt, history, model, temperature, num_calls, use_embeddings):
|
| 152 |
+
logging.info(f"User Query: {message}")
|
| 153 |
+
logging.info(f"Model Used: {model}")
|
| 154 |
+
logging.info(f"Temperature: {temperature}")
|
| 155 |
+
logging.info(f"Number of API Calls: {num_calls}")
|
| 156 |
+
logging.info(f"Use Embeddings: {use_embeddings}")
|
| 157 |
+
logging.info(f"System Prompt: {system_prompt}")
|
| 158 |
+
logging.info(f"History: {history}")
|
| 159 |
+
|
| 160 |
+
chat_history = process_history(history)
|
| 161 |
|
| 162 |
try:
|
|
|
|
| 163 |
async for main_content, sources in get_response_with_search(
|
| 164 |
message,
|
| 165 |
system_prompt,
|
|
|
|
| 169 |
num_calls=num_calls,
|
| 170 |
temperature=temperature
|
| 171 |
):
|
| 172 |
+
yield main_content
|
| 173 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
if sources:
|
| 175 |
yield f"\n\nSources:\n{sources}"
|
| 176 |
|
|
|
|
| 197 |
def create_gradio_interface():
|
| 198 |
custom_placeholder = "Enter your question here for web search."
|
| 199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
demo = gr.ChatInterface(
|
| 201 |
+
fn=respond,
|
| 202 |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False),
|
| 203 |
additional_inputs=[
|
| 204 |
gr.Textbox(value=DEFAULT_SYSTEM_PROMPT, lines=6, label="System Prompt", placeholder="Enter your system prompt here"),
|
|
|
|
| 244 |
|
| 245 |
if __name__ == "__main__":
|
| 246 |
demo = create_gradio_interface()
|
| 247 |
+
demo.launch(share=True)
|