Update app.py
Browse files
app.py
CHANGED
|
@@ -1,16 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from huggingface_hub import InferenceApi
|
| 3 |
-
from duckduckgo_search import DDGS
|
| 4 |
import requests
|
| 5 |
-
import
|
| 6 |
from typing import List
|
| 7 |
from pydantic import BaseModel, Field
|
| 8 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Environment variables and configurations
|
| 11 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
# Function to perform a DuckDuckGo search
|
| 14 |
def duckduckgo_search(query):
|
| 15 |
with DDGS() as ddgs:
|
| 16 |
results = ddgs.text(query, max_results=5)
|
|
@@ -23,81 +110,106 @@ class CitingSources(BaseModel):
|
|
| 23 |
)
|
| 24 |
|
| 25 |
def get_response_with_search(query):
|
| 26 |
-
# Perform the web search
|
| 27 |
search_results = duckduckgo_search(query)
|
| 28 |
-
|
| 29 |
-
# Use the search results as context for the model
|
| 30 |
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
|
| 31 |
for result in search_results if 'body' in result)
|
| 32 |
|
| 33 |
-
# Prompt formatted for Mistral-7B-Instruct
|
| 34 |
prompt = f"""<s>[INST] Using the following context:
|
| 35 |
{context}
|
| 36 |
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
| 37 |
After writing the document, please provide a list of sources used in your response. [/INST]"""
|
| 38 |
|
| 39 |
-
|
| 40 |
-
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3"
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
|
|
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
"parameters": {
|
| 49 |
-
"max_new_tokens": 1000,
|
| 50 |
-
"temperature": 0.7,
|
| 51 |
-
"top_p": 0.95,
|
| 52 |
-
"top_k": 40,
|
| 53 |
-
"repetition_penalty": 1.1
|
| 54 |
-
}
|
| 55 |
-
}
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
generated_text = result[0].get('generated_text', 'No text generated')
|
| 64 |
-
|
| 65 |
-
# Remove the instruction part
|
| 66 |
-
content_start = generated_text.find("[/INST]")
|
| 67 |
-
if content_start != -1:
|
| 68 |
-
generated_text = generated_text[content_start + 7:].strip()
|
| 69 |
-
|
| 70 |
-
# Split the response into main content and sources
|
| 71 |
-
parts = generated_text.split("Sources:", 1)
|
| 72 |
-
main_content = parts[0].strip()
|
| 73 |
-
sources = parts[1].strip() if len(parts) > 1 else ""
|
| 74 |
-
|
| 75 |
-
return main_content, sources
|
| 76 |
-
else:
|
| 77 |
-
return f"Unexpected response format: {result}", ""
|
| 78 |
else:
|
| 79 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
formatted_response = f"{main_content}\n\nSources:\n{sources}"
|
| 84 |
return formatted_response
|
| 85 |
|
| 86 |
-
# Gradio
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
["
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
],
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
if __name__ == "__main__":
|
| 103 |
-
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import re
|
| 4 |
import gradio as gr
|
|
|
|
|
|
|
| 5 |
import requests
|
| 6 |
+
from duckduckgo_search import DDGS
|
| 7 |
from typing import List
|
| 8 |
from pydantic import BaseModel, Field
|
| 9 |
+
from tempfile import NamedTemporaryFile
|
| 10 |
+
from langchain_community.vectorstores import FAISS
|
| 11 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 12 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 13 |
+
from llama_parse import LlamaParse
|
| 14 |
|
| 15 |
# Environment variables and configurations
|
| 16 |
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
| 17 |
+
llama_cloud_api_key = os.environ.get("LLAMA_CLOUD_API_KEY")
|
| 18 |
+
|
| 19 |
+
# Initialize LlamaParse
|
| 20 |
+
llama_parser = LlamaParse(
|
| 21 |
+
api_key=llama_cloud_api_key,
|
| 22 |
+
result_type="markdown",
|
| 23 |
+
num_workers=4,
|
| 24 |
+
verbose=True,
|
| 25 |
+
language="en",
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
def load_document(file: NamedTemporaryFile, parser: str = "pypdf") -> List[dict]:
|
| 29 |
+
"""Loads and splits the document into pages."""
|
| 30 |
+
if parser == "pypdf":
|
| 31 |
+
loader = PyPDFLoader(file.name)
|
| 32 |
+
return loader.load_and_split()
|
| 33 |
+
elif parser == "llamaparse":
|
| 34 |
+
try:
|
| 35 |
+
documents = llama_parser.load_data(file.name)
|
| 36 |
+
return [{"page_content": doc.text, "metadata": {"source": file.name}} for doc in documents]
|
| 37 |
+
except Exception as e:
|
| 38 |
+
print(f"Error using Llama Parse: {str(e)}")
|
| 39 |
+
print("Falling back to PyPDF parser")
|
| 40 |
+
loader = PyPDFLoader(file.name)
|
| 41 |
+
return loader.load_and_split()
|
| 42 |
+
else:
|
| 43 |
+
raise ValueError("Invalid parser specified. Use 'pypdf' or 'llamaparse'.")
|
| 44 |
+
|
| 45 |
+
def get_embeddings():
|
| 46 |
+
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
| 47 |
+
|
| 48 |
+
def update_vectors(files, parser):
|
| 49 |
+
if not files:
|
| 50 |
+
return "Please upload at least one PDF file."
|
| 51 |
+
|
| 52 |
+
embed = get_embeddings()
|
| 53 |
+
total_chunks = 0
|
| 54 |
+
|
| 55 |
+
all_data = []
|
| 56 |
+
for file in files:
|
| 57 |
+
data = load_document(file, parser)
|
| 58 |
+
all_data.extend(data)
|
| 59 |
+
total_chunks += len(data)
|
| 60 |
+
|
| 61 |
+
if os.path.exists("faiss_database"):
|
| 62 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
| 63 |
+
database.add_documents(all_data)
|
| 64 |
+
else:
|
| 65 |
+
database = FAISS.from_documents(all_data, embed)
|
| 66 |
+
|
| 67 |
+
database.save_local("faiss_database")
|
| 68 |
+
|
| 69 |
+
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files using {parser}."
|
| 70 |
+
|
| 71 |
+
def generate_chunked_response(prompt, max_tokens=1000, max_chunks=5):
|
| 72 |
+
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3"
|
| 73 |
+
headers = {"Authorization": f"Bearer {huggingface_token}"}
|
| 74 |
+
payload = {
|
| 75 |
+
"inputs": prompt,
|
| 76 |
+
"parameters": {
|
| 77 |
+
"max_new_tokens": max_tokens,
|
| 78 |
+
"temperature": 0.7,
|
| 79 |
+
"top_p": 0.95,
|
| 80 |
+
"top_k": 40,
|
| 81 |
+
"repetition_penalty": 1.1
|
| 82 |
+
}
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
full_response = ""
|
| 86 |
+
for _ in range(max_chunks):
|
| 87 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
| 88 |
+
if response.status_code == 200:
|
| 89 |
+
result = response.json()
|
| 90 |
+
if isinstance(result, list) and len(result) > 0:
|
| 91 |
+
chunk = result[0].get('generated_text', '')
|
| 92 |
+
full_response += chunk
|
| 93 |
+
if chunk.endswith((".", "!", "?")):
|
| 94 |
+
break
|
| 95 |
+
else:
|
| 96 |
+
break
|
| 97 |
+
else:
|
| 98 |
+
break
|
| 99 |
+
return full_response.strip()
|
| 100 |
|
|
|
|
| 101 |
def duckduckgo_search(query):
|
| 102 |
with DDGS() as ddgs:
|
| 103 |
results = ddgs.text(query, max_results=5)
|
|
|
|
| 110 |
)
|
| 111 |
|
| 112 |
def get_response_with_search(query):
|
|
|
|
| 113 |
search_results = duckduckgo_search(query)
|
|
|
|
|
|
|
| 114 |
context = "\n".join(f"{result['title']}\n{result['body']}\nSource: {result['href']}\n"
|
| 115 |
for result in search_results if 'body' in result)
|
| 116 |
|
|
|
|
| 117 |
prompt = f"""<s>[INST] Using the following context:
|
| 118 |
{context}
|
| 119 |
Write a detailed and complete research document that fulfills the following user request: '{query}'
|
| 120 |
After writing the document, please provide a list of sources used in your response. [/INST]"""
|
| 121 |
|
| 122 |
+
generated_text = generate_chunked_response(prompt)
|
|
|
|
| 123 |
|
| 124 |
+
content_start = generated_text.find("[/INST]")
|
| 125 |
+
if content_start != -1:
|
| 126 |
+
generated_text = generated_text[content_start + 7:].strip()
|
| 127 |
|
| 128 |
+
parts = generated_text.split("Sources:", 1)
|
| 129 |
+
main_content = parts[0].strip()
|
| 130 |
+
sources = parts[1].strip() if len(parts) > 1 else ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
+
return main_content, sources
|
| 133 |
+
|
| 134 |
+
def get_response_from_pdf(query):
|
| 135 |
+
embed = get_embeddings()
|
| 136 |
+
if os.path.exists("faiss_database"):
|
| 137 |
+
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
else:
|
| 139 |
+
return "No documents available. Please upload PDF documents to answer questions.", ""
|
| 140 |
+
|
| 141 |
+
retriever = database.as_retriever()
|
| 142 |
+
relevant_docs = retriever.get_relevant_documents(query)
|
| 143 |
+
context_str = "\n".join([doc.page_content for doc in relevant_docs])
|
| 144 |
+
|
| 145 |
+
prompt = f"""<s>[INST] Using the following context from the PDF documents:
|
| 146 |
+
{context_str}
|
| 147 |
+
Write a detailed and complete response that answers the following user question: '{query}'
|
| 148 |
+
After writing the response, please provide a list of sources used (document names) in your answer. [/INST]"""
|
| 149 |
|
| 150 |
+
generated_text = generate_chunked_response(prompt)
|
| 151 |
+
|
| 152 |
+
content_start = generated_text.find("[/INST]")
|
| 153 |
+
if content_start != -1:
|
| 154 |
+
generated_text = generated_text[content_start + 7:].strip()
|
| 155 |
+
|
| 156 |
+
parts = generated_text.split("Sources:", 1)
|
| 157 |
+
main_content = parts[0].strip()
|
| 158 |
+
sources = parts[1].strip() if len(parts) > 1 else ""
|
| 159 |
+
|
| 160 |
+
return main_content, sources
|
| 161 |
+
|
| 162 |
+
def chatbot_interface(message, history, use_web_search):
|
| 163 |
+
if use_web_search:
|
| 164 |
+
main_content, sources = get_response_with_search(message)
|
| 165 |
+
else:
|
| 166 |
+
main_content, sources = get_response_from_pdf(message)
|
| 167 |
+
|
| 168 |
formatted_response = f"{main_content}\n\nSources:\n{sources}"
|
| 169 |
return formatted_response
|
| 170 |
|
| 171 |
+
# Gradio interface
|
| 172 |
+
with gr.Blocks() as demo:
|
| 173 |
+
gr.Markdown("# AI-powered Web Search and PDF Chat Assistant")
|
| 174 |
+
|
| 175 |
+
with gr.Row():
|
| 176 |
+
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
|
| 177 |
+
parser_dropdown = gr.Dropdown(choices=["pypdf", "llamaparse"], label="Select PDF Parser", value="pypdf")
|
| 178 |
+
update_button = gr.Button("Upload Document")
|
| 179 |
+
|
| 180 |
+
update_output = gr.Textbox(label="Update Status")
|
| 181 |
+
update_button.click(update_vectors, inputs=[file_input, parser_dropdown], outputs=update_output)
|
| 182 |
+
|
| 183 |
+
with gr.Row():
|
| 184 |
+
chatbot = gr.Chatbot(label="Conversation")
|
| 185 |
+
with gr.Column():
|
| 186 |
+
msg = gr.Textbox(label="Ask a question")
|
| 187 |
+
use_web_search = gr.Checkbox(label="Use Web Search", value=False)
|
| 188 |
+
submit = gr.Button("Submit")
|
| 189 |
+
|
| 190 |
+
gr.Examples(
|
| 191 |
+
examples=[
|
| 192 |
+
["What are the latest developments in AI?"],
|
| 193 |
+
["Tell me about recent updates on GitHub"],
|
| 194 |
+
["What are the best hotels in Galapagos, Ecuador?"],
|
| 195 |
+
["Summarize recent advancements in Python programming"],
|
| 196 |
+
],
|
| 197 |
+
inputs=msg,
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
submit.click(chatbot_interface, inputs=[msg, chatbot, use_web_search], outputs=[chatbot])
|
| 201 |
+
msg.submit(chatbot_interface, inputs=[msg, chatbot, use_web_search], outputs=[chatbot])
|
| 202 |
+
|
| 203 |
+
gr.Markdown(
|
| 204 |
+
"""
|
| 205 |
+
## How to use
|
| 206 |
+
1. Upload PDF documents using the file input at the top.
|
| 207 |
+
2. Select the PDF parser (pypdf or llamaparse) and click "Upload Document" to update the vector store.
|
| 208 |
+
3. Ask questions in the textbox.
|
| 209 |
+
4. Toggle "Use Web Search" to switch between PDF chat and web search.
|
| 210 |
+
5. Click "Submit" or press Enter to get a response.
|
| 211 |
+
"""
|
| 212 |
+
)
|
| 213 |
|
| 214 |
if __name__ == "__main__":
|
| 215 |
+
demo.launch(share=True)
|