Update app.py
Browse files
app.py
CHANGED
|
@@ -1,27 +1,18 @@
|
|
| 1 |
import os
|
| 2 |
import logging
|
| 3 |
-
import
|
| 4 |
-
import time
|
| 5 |
import gradio as gr
|
| 6 |
from huggingface_hub import InferenceClient
|
| 7 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 8 |
from langchain.vectorstores import FAISS
|
| 9 |
from langchain.schema import Document
|
| 10 |
from duckduckgo_search import DDGS
|
| 11 |
-
from dotenv import load_dotenv
|
| 12 |
-
from functools import lru_cache
|
| 13 |
-
from tenacity import retry, stop_after_attempt, wait_fixed
|
| 14 |
-
|
| 15 |
-
# Load environment variables
|
| 16 |
-
load_dotenv()
|
| 17 |
|
| 18 |
# Configure logging
|
| 19 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 20 |
-
logger = logging.getLogger(__name__)
|
| 21 |
|
| 22 |
# Environment variables and configurations
|
| 23 |
-
|
| 24 |
-
logger.info(f"Using Hugging Face token: {HUGGINGFACE_TOKEN[:4]}...{HUGGINGFACE_TOKEN[-4:] if HUGGINGFACE_TOKEN else 'Not Set'}")
|
| 25 |
|
| 26 |
MODELS = [
|
| 27 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
|
@@ -33,8 +24,7 @@ MODELS = [
|
|
| 33 |
"google/gemma-2-27b-it"
|
| 34 |
]
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
DEFAULT_SYSTEM_PROMPT = """You are a world-class financial AI assistant, capable of complex reasoning and reflection.
|
| 39 |
Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags.
|
| 40 |
Providing comprehensive and accurate information based on web search results is essential.
|
|
@@ -42,47 +32,36 @@ Your goal is to synthesize the given context into a coherent and detailed respon
|
|
| 42 |
Please ensure that your response is well-structured and factual.
|
| 43 |
If you detect that you made a mistake in your reasoning at any point, correct yourself inside <reflection> tags."""
|
| 44 |
|
| 45 |
-
class WebSearcher:
|
| 46 |
-
def __init__(self):
|
| 47 |
-
self.ddgs = DDGS()
|
| 48 |
-
|
| 49 |
-
@lru_cache(maxsize=100)
|
| 50 |
-
def search(self, query, max_results=5):
|
| 51 |
-
try:
|
| 52 |
-
results = list(self.ddgs.text(query, max_results=max_results))
|
| 53 |
-
logger.info(f"Search completed for query: {query}")
|
| 54 |
-
return results
|
| 55 |
-
except Exception as e:
|
| 56 |
-
logger.error(f"Error during DuckDuckGo search: {str(e)}")
|
| 57 |
-
return []
|
| 58 |
-
|
| 59 |
-
@lru_cache(maxsize=1)
|
| 60 |
def get_embeddings():
|
| 61 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
def create_web_search_vectors(search_results):
|
| 64 |
embed = get_embeddings()
|
| 65 |
-
documents = [
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
]
|
| 72 |
-
logger.info(f"Created vectors for {len(documents)} search results.")
|
| 73 |
return FAISS.from_documents(documents, embed)
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
return client.chat_completion(**api_params)
|
| 78 |
-
|
| 79 |
-
def get_response_with_search(query, system_prompt, model, use_embeddings, history, num_calls=3, temperature=0.2):
|
| 80 |
-
searcher = WebSearcher()
|
| 81 |
-
search_results = searcher.search(query)
|
| 82 |
|
| 83 |
if not search_results:
|
| 84 |
-
|
| 85 |
-
|
|
|
|
| 86 |
|
| 87 |
sources = [result['href'] for result in search_results if 'href' in result]
|
| 88 |
source_list_str = "\n".join(sources)
|
|
@@ -95,80 +74,105 @@ def get_response_with_search(query, system_prompt, model, use_embeddings, histor
|
|
| 95 |
else:
|
| 96 |
context = "\n".join([f"{result['title']}\n{result['body']}" for result in search_results])
|
| 97 |
|
| 98 |
-
|
| 99 |
|
| 100 |
-
|
| 101 |
-
user_message = f"""Chat history:
|
| 102 |
-
{chat_history}
|
| 103 |
-
|
| 104 |
-
Using the following context from web search results:
|
| 105 |
{context}
|
| 106 |
|
| 107 |
Write a detailed and complete research document that fulfills the following user request: '{query}'."""
|
| 108 |
|
| 109 |
-
client = InferenceClient(model, token=
|
| 110 |
full_response = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
try:
|
| 112 |
-
for
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
elif hasattr(response, 'content'):
|
| 137 |
-
full_response += response.content
|
| 138 |
-
else:
|
| 139 |
-
logger.error(f"Unexpected response format from the model: {type(response)}")
|
| 140 |
-
return "Unexpected response format from the model. Please try again.", ""
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
return f"An error occurred while processing your request: {str(e)}", ""
|
| 149 |
|
| 150 |
if not full_response:
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
def respond(message, system_prompt, history, model, temperature, num_calls, use_embeddings):
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
try:
|
| 167 |
-
|
| 168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
except Exception as e:
|
| 170 |
-
|
| 171 |
-
|
| 172 |
|
| 173 |
css = """
|
| 174 |
/* Fine-tune chatbox size */
|
|
@@ -182,6 +186,7 @@ css = """
|
|
| 182 |
}
|
| 183 |
"""
|
| 184 |
|
|
|
|
| 185 |
def create_gradio_interface():
|
| 186 |
custom_placeholder = "Enter your question here for web search."
|
| 187 |
|
|
@@ -232,4 +237,4 @@ def create_gradio_interface():
|
|
| 232 |
|
| 233 |
if __name__ == "__main__":
|
| 234 |
demo = create_gradio_interface()
|
| 235 |
-
demo.launch(share=True)
|
|
|
|
| 1 |
import os
|
| 2 |
import logging
|
| 3 |
+
import asyncio
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
from huggingface_hub import InferenceClient
|
| 6 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 7 |
from langchain.vectorstores import FAISS
|
| 8 |
from langchain.schema import Document
|
| 9 |
from duckduckgo_search import DDGS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Configure logging
|
| 12 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
|
| 13 |
|
| 14 |
# Environment variables and configurations
|
| 15 |
+
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
|
|
|
|
| 16 |
|
| 17 |
MODELS = [
|
| 18 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
|
|
|
| 24 |
"google/gemma-2-27b-it"
|
| 25 |
]
|
| 26 |
|
| 27 |
+
# Default system message template
|
|
|
|
| 28 |
DEFAULT_SYSTEM_PROMPT = """You are a world-class financial AI assistant, capable of complex reasoning and reflection.
|
| 29 |
Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags.
|
| 30 |
Providing comprehensive and accurate information based on web search results is essential.
|
|
|
|
| 32 |
Please ensure that your response is well-structured and factual.
|
| 33 |
If you detect that you made a mistake in your reasoning at any point, correct yourself inside <reflection> tags."""
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
def get_embeddings():
|
| 36 |
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
|
| 37 |
|
| 38 |
+
def duckduckgo_search(query):
|
| 39 |
+
try:
|
| 40 |
+
with DDGS() as ddgs:
|
| 41 |
+
results = ddgs.text(query, max_results=5)
|
| 42 |
+
logging.info(f"Search completed for query: {query}")
|
| 43 |
+
return results
|
| 44 |
+
except Exception as e:
|
| 45 |
+
logging.error(f"Error during DuckDuckGo search: {str(e)}")
|
| 46 |
+
return []
|
| 47 |
+
|
| 48 |
def create_web_search_vectors(search_results):
|
| 49 |
embed = get_embeddings()
|
| 50 |
+
documents = []
|
| 51 |
+
for result in search_results:
|
| 52 |
+
if 'body' in result:
|
| 53 |
+
content = f"{result['title']}\n{result['body']}\nSource: {result['href']}"
|
| 54 |
+
documents.append(Document(page_content=content, metadata={"source": result['href']}))
|
| 55 |
+
logging.info(f"Created vectors for {len(documents)} search results.")
|
|
|
|
|
|
|
| 56 |
return FAISS.from_documents(documents, embed)
|
| 57 |
|
| 58 |
+
async def get_response_with_search(query, system_prompt, model, use_embeddings, history=None, num_calls=3, temperature=0.2):
|
| 59 |
+
search_results = duckduckgo_search(query)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
if not search_results:
|
| 62 |
+
logging.warning(f"No web search results found for query: {query}")
|
| 63 |
+
yield "No web search results available. Please try again.", ""
|
| 64 |
+
return
|
| 65 |
|
| 66 |
sources = [result['href'] for result in search_results if 'href' in result]
|
| 67 |
source_list_str = "\n".join(sources)
|
|
|
|
| 74 |
else:
|
| 75 |
context = "\n".join([f"{result['title']}\n{result['body']}" for result in search_results])
|
| 76 |
|
| 77 |
+
logging.info(f"Context created for query: {query}")
|
| 78 |
|
| 79 |
+
user_message = f"""Using the following context from web search results:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
{context}
|
| 81 |
|
| 82 |
Write a detailed and complete research document that fulfills the following user request: '{query}'."""
|
| 83 |
|
| 84 |
+
client = InferenceClient(model, token=huggingface_token)
|
| 85 |
full_response = ""
|
| 86 |
+
|
| 87 |
+
messages = [
|
| 88 |
+
{"role": "system", "content": system_prompt},
|
| 89 |
+
{"role": "user", "content": user_message}
|
| 90 |
+
]
|
| 91 |
+
|
| 92 |
+
# Include chat history if provided
|
| 93 |
+
if history:
|
| 94 |
+
messages = history + messages
|
| 95 |
+
|
| 96 |
try:
|
| 97 |
+
for call in range(num_calls):
|
| 98 |
+
try:
|
| 99 |
+
for response in client.chat_completion(
|
| 100 |
+
messages=messages,
|
| 101 |
+
max_tokens=6000,
|
| 102 |
+
temperature=temperature,
|
| 103 |
+
stream=True,
|
| 104 |
+
top_p=0.8,
|
| 105 |
+
):
|
| 106 |
+
if isinstance(response, dict) and "choices" in response:
|
| 107 |
+
for choice in response["choices"]:
|
| 108 |
+
if "delta" in choice and "content" in choice["delta"]:
|
| 109 |
+
chunk = choice["delta"]["content"]
|
| 110 |
+
full_response += chunk
|
| 111 |
+
yield full_response, ""
|
| 112 |
+
else:
|
| 113 |
+
logging.error("Unexpected response format or missing attributes in the response object.")
|
| 114 |
+
break
|
| 115 |
+
except Exception as e:
|
| 116 |
+
logging.error(f"Error in API call {call + 1}: {str(e)}")
|
| 117 |
+
if "422 Client Error" in str(e):
|
| 118 |
+
logging.warning("Received 422 Client Error. Adjusting request parameters.")
|
| 119 |
+
# You might want to adjust parameters here, e.g., reduce max_tokens
|
| 120 |
+
yield f"An error occurred during API call {call + 1}. Retrying...", ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
+
# Add a small delay between API calls
|
| 123 |
+
await asyncio.sleep(1) # 1 second delay
|
| 124 |
+
|
| 125 |
+
except asyncio.CancelledError:
|
| 126 |
+
logging.warning("The operation was cancelled.")
|
| 127 |
+
yield "The operation was cancelled. Please try again.", ""
|
|
|
|
| 128 |
|
| 129 |
if not full_response:
|
| 130 |
+
logging.warning("No response generated from the model")
|
| 131 |
+
yield "No response generated from the model.", ""
|
| 132 |
+
|
| 133 |
+
yield f"{full_response}\n\nSources:\n{source_list_str}", ""
|
| 134 |
+
|
| 135 |
+
async def respond(message, system_prompt, history, model, temperature, num_calls, use_embeddings):
|
| 136 |
+
logging.info(f"User Query: {message}")
|
| 137 |
+
logging.info(f"Model Used: {model}")
|
| 138 |
+
logging.info(f"Temperature: {temperature}")
|
| 139 |
+
logging.info(f"Number of API Calls: {num_calls}")
|
| 140 |
+
logging.info(f"Use Embeddings: {use_embeddings}")
|
| 141 |
+
logging.info(f"System Prompt: {system_prompt}")
|
| 142 |
+
|
| 143 |
+
# Convert gradio history to the format expected by get_response_with_search
|
| 144 |
+
chat_history = []
|
| 145 |
+
for human, assistant in history:
|
| 146 |
+
chat_history.append({"role": "user", "content": human})
|
| 147 |
+
if assistant:
|
| 148 |
+
chat_history.append({"role": "assistant", "content": assistant})
|
| 149 |
|
| 150 |
try:
|
| 151 |
+
full_response = ""
|
| 152 |
+
async for main_content, sources in get_response_with_search(
|
| 153 |
+
message,
|
| 154 |
+
system_prompt,
|
| 155 |
+
model,
|
| 156 |
+
use_embeddings,
|
| 157 |
+
history=chat_history,
|
| 158 |
+
num_calls=num_calls,
|
| 159 |
+
temperature=temperature
|
| 160 |
+
):
|
| 161 |
+
# Yield only the new content
|
| 162 |
+
new_content = main_content[len(full_response):]
|
| 163 |
+
full_response = main_content
|
| 164 |
+
yield new_content
|
| 165 |
+
|
| 166 |
+
# Yield the sources as a separate message
|
| 167 |
+
if sources:
|
| 168 |
+
yield f"\n\nSources:\n{sources}"
|
| 169 |
+
|
| 170 |
+
except asyncio.CancelledError:
|
| 171 |
+
logging.warning("The operation was cancelled.")
|
| 172 |
+
yield "The operation was cancelled. Please try again."
|
| 173 |
except Exception as e:
|
| 174 |
+
logging.error(f"Error in respond function: {str(e)}")
|
| 175 |
+
yield f"An error occurred: {str(e)}"
|
| 176 |
|
| 177 |
css = """
|
| 178 |
/* Fine-tune chatbox size */
|
|
|
|
| 186 |
}
|
| 187 |
"""
|
| 188 |
|
| 189 |
+
# Gradio interface setup
|
| 190 |
def create_gradio_interface():
|
| 191 |
custom_placeholder = "Enter your question here for web search."
|
| 192 |
|
|
|
|
| 237 |
|
| 238 |
if __name__ == "__main__":
|
| 239 |
demo = create_gradio_interface()
|
| 240 |
+
demo.launch(share=True)
|