Update app.py
Browse files
app.py
CHANGED
|
@@ -23,8 +23,6 @@ MODELS = [
|
|
| 23 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 24 |
"mistralai/Mistral-Nemo-Instruct-2407",
|
| 25 |
"meta-llama/Meta-Llama-3.1-8B-Instruct",
|
| 26 |
-
"meta-llama/Meta-Llama-3.1-70B-Instruct",
|
| 27 |
-
"meta-llama/Meta-Llama-3.1-8B-Instruct",
|
| 28 |
"meta-llama/Meta-Llama-3.1-70B-Instruct"
|
| 29 |
]
|
| 30 |
|
|
@@ -56,30 +54,42 @@ class CitingSources(BaseModel):
|
|
| 56 |
description="List of sources to cite. Should be an URL of the source."
|
| 57 |
)
|
| 58 |
|
| 59 |
-
def chatbot_interface(message, history, model, temperature, num_calls, use_embeddings
|
| 60 |
if not message.strip():
|
| 61 |
return "", history
|
| 62 |
|
| 63 |
history = history + [(message, "")]
|
| 64 |
|
| 65 |
try:
|
| 66 |
-
for response in respond(message, history, model, temperature, num_calls, use_embeddings
|
| 67 |
history[-1] = (message, response)
|
| 68 |
yield history
|
|
|
|
|
|
|
| 69 |
except Exception as e:
|
| 70 |
logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
|
| 71 |
history[-1] = (message, f"An unexpected error occurred: {str(e)}")
|
| 72 |
yield history
|
| 73 |
|
| 74 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
logging.info(f"User Query: {message}")
|
| 76 |
logging.info(f"Model Used: {model}")
|
| 77 |
logging.info(f"Use Embeddings: {use_embeddings}")
|
| 78 |
|
| 79 |
try:
|
| 80 |
-
for main_content, sources in get_response_with_search(message, model, num_calls, temperature, use_embeddings
|
| 81 |
-
|
| 82 |
-
|
|
|
|
| 83 |
except Exception as e:
|
| 84 |
logging.error(f"Error with {model}: {str(e)}")
|
| 85 |
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
|
|
@@ -95,16 +105,19 @@ def create_web_search_vectors(search_results):
|
|
| 95 |
|
| 96 |
return FAISS.from_documents(documents, embed)
|
| 97 |
|
| 98 |
-
def get_response_with_search(query, model, num_calls=3, temperature=0.2, use_embeddings=True
|
| 99 |
search_results = duckduckgo_search(query)
|
| 100 |
|
| 101 |
if use_embeddings:
|
| 102 |
web_search_database = create_web_search_vectors(search_results)
|
|
|
|
| 103 |
if not web_search_database:
|
| 104 |
yield "No web search results available. Please try again.", ""
|
| 105 |
return
|
|
|
|
| 106 |
retriever = web_search_database.as_retriever(search_kwargs={"k": 5})
|
| 107 |
relevant_docs = retriever.get_relevant_documents(query)
|
|
|
|
| 108 |
context = "\n".join([doc.page_content for doc in relevant_docs])
|
| 109 |
else:
|
| 110 |
context = "\n".join([f"{result['title']}\n{result['body']}\nSource: {result['href']}" for result in search_results])
|
|
@@ -131,7 +144,7 @@ After writing the document, please provide a list of sources used in your respon
|
|
| 131 |
try:
|
| 132 |
response = client.chat_completion(
|
| 133 |
messages=[
|
| 134 |
-
{"role": "system", "content":
|
| 135 |
{"role": "user", "content": prompt}
|
| 136 |
],
|
| 137 |
max_tokens=max_new_tokens,
|
|
@@ -179,19 +192,18 @@ def initial_conversation():
|
|
| 179 |
(None, "Welcome! I'm your AI assistant for web search. Here's how you can use me:\n\n"
|
| 180 |
"1. Ask me any question, and I'll search the web for information.\n"
|
| 181 |
"2. You can adjust the model, temperature, number of API calls, and whether to use embeddings for fine-tuned responses.\n"
|
| 182 |
-
"3.
|
| 183 |
-
"4. For any queries, feel free to reach out @[email protected] or discord - shreyas094\n\n"
|
| 184 |
"To get started, ask me a question!")
|
| 185 |
]
|
| 186 |
|
| 187 |
demo = gr.ChatInterface(
|
| 188 |
-
|
|
|
|
| 189 |
additional_inputs=[
|
| 190 |
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[2]),
|
| 191 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
| 192 |
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
|
| 193 |
gr.Checkbox(label="Use Embeddings", value=True),
|
| 194 |
-
gr.Textbox(label="System Prompt", value=DEFAULT_SYSTEM_PROMPT, lines=5),
|
| 195 |
],
|
| 196 |
title="AI-powered Web Search Assistant",
|
| 197 |
description="Ask questions and get answers from web search results.",
|
|
|
|
| 23 |
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 24 |
"mistralai/Mistral-Nemo-Instruct-2407",
|
| 25 |
"meta-llama/Meta-Llama-3.1-8B-Instruct",
|
|
|
|
|
|
|
| 26 |
"meta-llama/Meta-Llama-3.1-70B-Instruct"
|
| 27 |
]
|
| 28 |
|
|
|
|
| 54 |
description="List of sources to cite. Should be an URL of the source."
|
| 55 |
)
|
| 56 |
|
| 57 |
+
def chatbot_interface(message, history, model, temperature, num_calls, use_embeddings):
|
| 58 |
if not message.strip():
|
| 59 |
return "", history
|
| 60 |
|
| 61 |
history = history + [(message, "")]
|
| 62 |
|
| 63 |
try:
|
| 64 |
+
for response in respond(message, history, model, temperature, num_calls, use_embeddings):
|
| 65 |
history[-1] = (message, response)
|
| 66 |
yield history
|
| 67 |
+
except gr.CanceledError:
|
| 68 |
+
yield history
|
| 69 |
except Exception as e:
|
| 70 |
logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
|
| 71 |
history[-1] = (message, f"An unexpected error occurred: {str(e)}")
|
| 72 |
yield history
|
| 73 |
|
| 74 |
+
def retry_last_response(history, model, temperature, num_calls, use_embeddings):
|
| 75 |
+
if not history:
|
| 76 |
+
return history
|
| 77 |
+
|
| 78 |
+
last_user_msg = history[-1][0]
|
| 79 |
+
history = history[:-1] # Remove the last response
|
| 80 |
+
|
| 81 |
+
return chatbot_interface(last_user_msg, history, model, temperature, num_calls, use_embeddings)
|
| 82 |
+
|
| 83 |
+
def respond(message, history, model, temperature, num_calls, use_embeddings):
|
| 84 |
logging.info(f"User Query: {message}")
|
| 85 |
logging.info(f"Model Used: {model}")
|
| 86 |
logging.info(f"Use Embeddings: {use_embeddings}")
|
| 87 |
|
| 88 |
try:
|
| 89 |
+
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature, use_embeddings=use_embeddings):
|
| 90 |
+
response = f"{main_content}\n\n{sources}"
|
| 91 |
+
first_line = response.split('\n')[0] if response else ''
|
| 92 |
+
yield response
|
| 93 |
except Exception as e:
|
| 94 |
logging.error(f"Error with {model}: {str(e)}")
|
| 95 |
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
|
|
|
|
| 105 |
|
| 106 |
return FAISS.from_documents(documents, embed)
|
| 107 |
|
| 108 |
+
def get_response_with_search(query, model, num_calls=3, temperature=0.2, use_embeddings=True):
|
| 109 |
search_results = duckduckgo_search(query)
|
| 110 |
|
| 111 |
if use_embeddings:
|
| 112 |
web_search_database = create_web_search_vectors(search_results)
|
| 113 |
+
|
| 114 |
if not web_search_database:
|
| 115 |
yield "No web search results available. Please try again.", ""
|
| 116 |
return
|
| 117 |
+
|
| 118 |
retriever = web_search_database.as_retriever(search_kwargs={"k": 5})
|
| 119 |
relevant_docs = retriever.get_relevant_documents(query)
|
| 120 |
+
|
| 121 |
context = "\n".join([doc.page_content for doc in relevant_docs])
|
| 122 |
else:
|
| 123 |
context = "\n".join([f"{result['title']}\n{result['body']}\nSource: {result['href']}" for result in search_results])
|
|
|
|
| 144 |
try:
|
| 145 |
response = client.chat_completion(
|
| 146 |
messages=[
|
| 147 |
+
{"role": "system", "content": DEFAULT_SYSTEM_PROMPT},
|
| 148 |
{"role": "user", "content": prompt}
|
| 149 |
],
|
| 150 |
max_tokens=max_new_tokens,
|
|
|
|
| 192 |
(None, "Welcome! I'm your AI assistant for web search. Here's how you can use me:\n\n"
|
| 193 |
"1. Ask me any question, and I'll search the web for information.\n"
|
| 194 |
"2. You can adjust the model, temperature, number of API calls, and whether to use embeddings for fine-tuned responses.\n"
|
| 195 |
+
"3. For any queries, feel free to reach out @[email protected] or discord - shreyas094\n\n"
|
|
|
|
| 196 |
"To get started, ask me a question!")
|
| 197 |
]
|
| 198 |
|
| 199 |
demo = gr.ChatInterface(
|
| 200 |
+
respond,
|
| 201 |
+
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False),
|
| 202 |
additional_inputs=[
|
| 203 |
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[2]),
|
| 204 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
|
| 205 |
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
|
| 206 |
gr.Checkbox(label="Use Embeddings", value=True),
|
|
|
|
| 207 |
],
|
| 208 |
title="AI-powered Web Search Assistant",
|
| 209 |
description="Ask questions and get answers from web search results.",
|