Spaces:
Runtime error
Runtime error
Commit
·
ecb6e4f
1
Parent(s):
d816e29
Describe your changes here
Browse files
app.py
CHANGED
|
@@ -1,64 +1,131 @@
|
|
| 1 |
-
import
|
| 2 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
""
|
| 7 |
-
|
|
|
|
| 8 |
|
|
|
|
| 9 |
|
| 10 |
-
def
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
temperature=temperature,
|
| 35 |
-
top_p=top_p,
|
| 36 |
-
):
|
| 37 |
-
token = message.choices[0].delta.content
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
-
"""
|
| 46 |
-
demo = gr.ChatInterface(
|
| 47 |
-
respond,
|
| 48 |
-
additional_inputs=[
|
| 49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 52 |
-
gr.Slider(
|
| 53 |
-
minimum=0.1,
|
| 54 |
-
maximum=1.0,
|
| 55 |
-
value=0.95,
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
-
],
|
| 60 |
-
)
|
| 61 |
|
|
|
|
|
|
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
if __name__ == "__main__":
|
| 64 |
-
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
from google import genai
|
| 4 |
+
from googleapiclient.discovery import build
|
| 5 |
+
from googleapiclient.errors import HttpError
|
| 6 |
+
from time import sleep
|
| 7 |
+
from typing import List
|
| 8 |
|
| 9 |
+
# Constants (ensure you secure these in production)
|
| 10 |
+
GOOGLE_SEARCH_API_KEY = "AIzaSyB06LrMInO1PDO6OoUFockguFuBX9EXJM8"
|
| 11 |
+
GOOGLE_SEARCH_ENGINE_ID = "a0172f6639ea44605"
|
| 12 |
+
GEMINI_API_KEY = "AIzaSyDeJRqHsnRYtuCufX2VB8nH7_r35jZxk20"
|
| 13 |
+
MAX_SEARCH_RESULTS = 10
|
| 14 |
|
| 15 |
+
# --- Your original functions (unchanged) ---
|
| 16 |
|
| 17 |
+
def initialize_apis():
|
| 18 |
+
try:
|
| 19 |
+
gemini_client = genai.Client(api_key=GEMINI_API_KEY)
|
| 20 |
+
search_service = build("customsearch", "v1", developerKey=GOOGLE_SEARCH_API_KEY)
|
| 21 |
+
test_search = search_service.cse().list(q="test", cx=GOOGLE_SEARCH_ENGINE_ID, num=1).execute()
|
| 22 |
+
if not test_search.get('items'):
|
| 23 |
+
print("⚠️ Warning: Test search returned no results. Check CX configuration.")
|
| 24 |
+
return gemini_client, search_service
|
| 25 |
+
except Exception as e:
|
| 26 |
+
raise Exception(f"Initialization failed: {str(e)}")
|
| 27 |
|
| 28 |
+
def execute_search(search_service, query: str) -> List[str]:
|
| 29 |
+
print(f"🔍 Searching for: {query}")
|
| 30 |
+
try:
|
| 31 |
+
response = search_service.cse().list(q=query, cx=GOOGLE_SEARCH_ENGINE_ID, num=MAX_SEARCH_RESULTS).execute()
|
| 32 |
+
print(f"Response keys: {list(response.keys())}")
|
| 33 |
+
items = response.get('items', [])
|
| 34 |
+
print(f"Found {len(items)} results")
|
| 35 |
+
return [item["link"] for item in items]
|
| 36 |
+
except HttpError as e:
|
| 37 |
+
print(f"HTTP Error {e.resp.status}: {e._get_reason()}")
|
| 38 |
+
return []
|
| 39 |
+
except Exception as e:
|
| 40 |
+
print(f"Search failed: {str(e)}")
|
| 41 |
+
return []
|
| 42 |
|
| 43 |
+
def plan_research_strategy(client: genai.Client, research_topic: str) -> List[str]:
|
| 44 |
+
prompt = f"""Generate 3-5 Google search queries to research: {research_topic}
|
| 45 |
+
- Use general web search terms
|
| 46 |
+
- Avoid special characters
|
| 47 |
+
- Use common terminology
|
| 48 |
+
Format as a numbered list."""
|
| 49 |
+
try:
|
| 50 |
+
response = client.models.generate_content(model="gemini-2.0-flash", contents=[prompt])
|
| 51 |
+
raw_queries = response.text.split("\n")
|
| 52 |
+
valid_queries = []
|
| 53 |
+
for q in raw_queries:
|
| 54 |
+
clean_q = q.split(". ", 1)[-1].strip()
|
| 55 |
+
if clean_q and len(clean_q) < 150:
|
| 56 |
+
valid_queries.append(clean_q)
|
| 57 |
+
print(f"Generated queries: {valid_queries}")
|
| 58 |
+
return valid_queries
|
| 59 |
+
except Exception as e:
|
| 60 |
+
raise Exception(f"Error generating queries: {e}")
|
| 61 |
|
| 62 |
+
def understand_user_request(client: genai.Client, user_request: str) -> str:
|
| 63 |
+
prompt = f"""You are a research assistant. The user provides: {user_request}.
|
| 64 |
+
First, summarize the request.
|
| 65 |
+
Second, identify ambiguities needing clarification.
|
| 66 |
+
If needed, ask questions. Else confirm understanding.
|
| 67 |
+
Format response as:
|
| 68 |
+
Summary: [summary]
|
| 69 |
+
Clarification Needed: [Yes/No]
|
| 70 |
+
Questions: [questions or None]"""
|
| 71 |
+
try:
|
| 72 |
+
response = client.models.generate_content(model="gemini-2.0-flash", contents=[prompt])
|
| 73 |
+
analysis = response.text
|
| 74 |
+
print(f"Analysis: {analysis}")
|
| 75 |
+
summary = analysis.split("Summary:")[1].split("Clarification Needed:")[0].strip()
|
| 76 |
+
clarification_needed = analysis.split("Clarification Needed:")[1].split("Questions:")[0].strip()
|
| 77 |
+
questions = analysis.split("Questions:")[1].strip()
|
| 78 |
+
if clarification_needed.lower() == "yes":
|
| 79 |
+
raise Exception(f"Clarification needed: {questions}")
|
| 80 |
+
print("Understood the request.")
|
| 81 |
+
return summary
|
| 82 |
+
except Exception as e:
|
| 83 |
+
raise Exception(f"Error analyzing request: {e}")
|
| 84 |
|
| 85 |
+
def extract_content_from_url(url: str) -> str:
|
| 86 |
+
print(f"Extracting content from {url} (simulated)...")
|
| 87 |
+
sleep(0.5)
|
| 88 |
+
return f"Content from {url} [placeholder]"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
+
def summarize_information(client: genai.Client, information: str) -> str:
|
| 91 |
+
prompt = f"""Summarize the following into a detailed report:
|
| 92 |
+
{information}"""
|
| 93 |
+
try:
|
| 94 |
+
response = client.models.generate_content(model="gemini-2.0-flash", contents=[prompt])
|
| 95 |
+
return response.text
|
| 96 |
+
except Exception as e:
|
| 97 |
+
print(f"Error summarizing: {e}")
|
| 98 |
+
return "Summary unavailable"
|
| 99 |
|
| 100 |
+
# --- FastAPI app definition ---
|
| 101 |
|
| 102 |
+
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
+
class RequestPayload(BaseModel):
|
| 105 |
+
research_request: str
|
| 106 |
|
| 107 |
+
@app.post("/predict")
|
| 108 |
+
def predict(payload: RequestPayload):
|
| 109 |
+
try:
|
| 110 |
+
gemini_client, search_service = initialize_apis()
|
| 111 |
+
research_topic = understand_user_request(gemini_client, payload.research_request)
|
| 112 |
+
queries = plan_research_strategy(gemini_client, research_topic)
|
| 113 |
+
if not queries:
|
| 114 |
+
raise HTTPException(status_code=400, detail="No valid queries generated")
|
| 115 |
+
all_content = []
|
| 116 |
+
for query in queries:
|
| 117 |
+
results = execute_search(search_service, query)
|
| 118 |
+
for url in results:
|
| 119 |
+
content = extract_content_from_url(url)
|
| 120 |
+
all_content.append(content)
|
| 121 |
+
if not all_content:
|
| 122 |
+
raise HTTPException(status_code=400, detail="No content gathered from searches")
|
| 123 |
+
summary = summarize_information(gemini_client, "\n".join(all_content))
|
| 124 |
+
return {"summary": summary}
|
| 125 |
+
except Exception as e:
|
| 126 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 127 |
+
|
| 128 |
+
# If running locally (for testing), use:
|
| 129 |
if __name__ == "__main__":
|
| 130 |
+
import uvicorn
|
| 131 |
+
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
|