Update app.py
Browse files
app.py
CHANGED
|
@@ -52,8 +52,9 @@ import line_cor
|
|
| 52 |
import altair as alt
|
| 53 |
#pytesseract.pytesseract.tesseract_cmd = r"./Tesseract-OCR/tesseract.exe"
|
| 54 |
from PIL import Image
|
| 55 |
-
|
| 56 |
#@st.cache_resource(experimental_allow_widgets=True)
|
|
|
|
| 57 |
def read_pdf(file):
|
| 58 |
# images=pdf2image.convert_from_path(file)
|
| 59 |
# # print(type(images))
|
|
@@ -87,8 +88,9 @@ def read_pdf(file):
|
|
| 87 |
# all_page_text += text + " " #page.extractText()
|
| 88 |
# return all_page_text
|
| 89 |
st.title("NLP APPLICATION")
|
| 90 |
-
|
| 91 |
#@st.cache_resource(experimental_allow_widgets=True)
|
|
|
|
| 92 |
def text_analyzer(my_text):
|
| 93 |
nlp = spacy.load('en_core_web_sm')
|
| 94 |
docx = nlp(my_text)
|
|
@@ -102,8 +104,9 @@ def load_models():
|
|
| 102 |
model = GPT2LMHeadModel.from_pretrained('gpt2-large')
|
| 103 |
return tokenizer, model
|
| 104 |
# Function For Extracting Entities
|
| 105 |
-
|
| 106 |
#@st.cache_resource(experimental_allow_widgets=True)
|
|
|
|
| 107 |
def entity_analyzer(my_text):
|
| 108 |
nlp = spacy.load('en_core_web_sm')
|
| 109 |
docx = nlp(my_text)
|
|
@@ -125,8 +128,8 @@ def main():
|
|
| 125 |
st.session_state["photo"]="done"
|
| 126 |
st.subheader("Please, feed your image/text, features/services will appear automatically!")
|
| 127 |
message = st.text_input("Type your text here!")
|
| 128 |
-
camera_photo = st.camera_input("Take a photo, Containing English texts", on_change=change_photo_state)
|
| 129 |
uploaded_photo = st.file_uploader("Upload your PDF",type=['jpg','png','jpeg','pdf'], on_change=change_photo_state)
|
|
|
|
| 130 |
if "photo" not in st.session_state:
|
| 131 |
st.session_state["photo"]="not done"
|
| 132 |
if st.session_state["photo"]=="done" or message:
|
|
|
|
| 52 |
import altair as alt
|
| 53 |
#pytesseract.pytesseract.tesseract_cmd = r"./Tesseract-OCR/tesseract.exe"
|
| 54 |
from PIL import Image
|
| 55 |
+
#@st.experimental_singleton
|
| 56 |
#@st.cache_resource(experimental_allow_widgets=True)
|
| 57 |
+
@st.cache_data
|
| 58 |
def read_pdf(file):
|
| 59 |
# images=pdf2image.convert_from_path(file)
|
| 60 |
# # print(type(images))
|
|
|
|
| 88 |
# all_page_text += text + " " #page.extractText()
|
| 89 |
# return all_page_text
|
| 90 |
st.title("NLP APPLICATION")
|
| 91 |
+
#@st.experimental_singleton
|
| 92 |
#@st.cache_resource(experimental_allow_widgets=True)
|
| 93 |
+
@st.cache_data
|
| 94 |
def text_analyzer(my_text):
|
| 95 |
nlp = spacy.load('en_core_web_sm')
|
| 96 |
docx = nlp(my_text)
|
|
|
|
| 104 |
model = GPT2LMHeadModel.from_pretrained('gpt2-large')
|
| 105 |
return tokenizer, model
|
| 106 |
# Function For Extracting Entities
|
| 107 |
+
#@st.experimental_singleton
|
| 108 |
#@st.cache_resource(experimental_allow_widgets=True)
|
| 109 |
+
@st.chache_data
|
| 110 |
def entity_analyzer(my_text):
|
| 111 |
nlp = spacy.load('en_core_web_sm')
|
| 112 |
docx = nlp(my_text)
|
|
|
|
| 128 |
st.session_state["photo"]="done"
|
| 129 |
st.subheader("Please, feed your image/text, features/services will appear automatically!")
|
| 130 |
message = st.text_input("Type your text here!")
|
|
|
|
| 131 |
uploaded_photo = st.file_uploader("Upload your PDF",type=['jpg','png','jpeg','pdf'], on_change=change_photo_state)
|
| 132 |
+
camera_photo = st.camera_input("Take a photo, Containing English texts", on_change=change_photo_state)
|
| 133 |
if "photo" not in st.session_state:
|
| 134 |
st.session_state["photo"]="not done"
|
| 135 |
if st.session_state["photo"]=="done" or message:
|