Update app.py
Browse files
app.py
CHANGED
|
@@ -42,7 +42,7 @@ import pdf2image
|
|
| 42 |
# NLP Pkgs
|
| 43 |
from textblob import TextBlob
|
| 44 |
import spacy
|
| 45 |
-
from gensim.summarization import summarize
|
| 46 |
import requests
|
| 47 |
import cv2
|
| 48 |
import numpy as np
|
|
@@ -173,20 +173,20 @@ def main():
|
|
| 173 |
if st.checkbox("Spell Corrections for English"):
|
| 174 |
st.success(TextBlob(text).correct())
|
| 175 |
if st.checkbox("Text Generation"):
|
| 176 |
-
ok = st.button("Generate")
|
| 177 |
-
if ok:
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
if st.checkbox("Mark here, Text Summarization for English or Bangla!"):
|
| 184 |
#st.subheader("Summarize Your Text for English and Bangla Texts!")
|
| 185 |
#message = st.text_area("Enter the Text","Type please ..")
|
| 186 |
#st.text("Using Gensim Summarizer ..")
|
| 187 |
#st.success(mess)
|
| 188 |
-
summary_result = summarize(text)
|
| 189 |
-
st.success(summary_result)
|
| 190 |
if st.checkbox("Mark to better English Text Summarization!"):
|
| 191 |
#st.title("Summarize Your Text for English only!")
|
| 192 |
tokenizer = AutoTokenizer.from_pretrained('t5-base')
|
|
|
|
| 42 |
# NLP Pkgs
|
| 43 |
from textblob import TextBlob
|
| 44 |
import spacy
|
| 45 |
+
#from gensim.summarization import summarize
|
| 46 |
import requests
|
| 47 |
import cv2
|
| 48 |
import numpy as np
|
|
|
|
| 173 |
if st.checkbox("Spell Corrections for English"):
|
| 174 |
st.success(TextBlob(text).correct())
|
| 175 |
if st.checkbox("Text Generation"):
|
| 176 |
+
#ok = st.button("Generate")
|
| 177 |
+
#if ok:
|
| 178 |
+
tokenizer, model = load_models()
|
| 179 |
+
input_ids = tokenizer(text, return_tensors='pt').input_ids
|
| 180 |
+
st.text("Using Hugging Face Transformer, Contrastive Search ..")
|
| 181 |
+
output = model.generate(input_ids, max_length=128)
|
| 182 |
+
st.success(tokenizer.decode(output[0], skip_special_tokens=True))
|
| 183 |
+
#if st.checkbox("Mark here, Text Summarization for English or Bangla!"):
|
| 184 |
#st.subheader("Summarize Your Text for English and Bangla Texts!")
|
| 185 |
#message = st.text_area("Enter the Text","Type please ..")
|
| 186 |
#st.text("Using Gensim Summarizer ..")
|
| 187 |
#st.success(mess)
|
| 188 |
+
#summary_result = summarize(text)
|
| 189 |
+
#st.success(summary_result)
|
| 190 |
if st.checkbox("Mark to better English Text Summarization!"):
|
| 191 |
#st.title("Summarize Your Text for English only!")
|
| 192 |
tokenizer = AutoTokenizer.from_pretrained('t5-base')
|