Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| def load_model(): | |
| model_id = "Tech-Meld/Hajax_Chat_1.0" | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = AutoModelForCausalLM.from_pretrained(model_id) | |
| return model, tokenizer | |
| def get_response(input_text, model, tokenizer): | |
| inputs = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors='pt') | |
| outputs = model.generate(inputs, max_length=1000, pad_token_id=tokenizer.eos_token_id) | |
| response = tokenizer.decode(outputs[:, inputs.shape[-1]:][0], skip_special_tokens=True) | |
| return response | |
| def main(): | |
| model, tokenizer = load_model() | |
| st.title("Chat with AI") | |
| input_text = st.text_input("You: ", "") | |
| if st.button("Send"): | |
| response = get_response(input_text, model, tokenizer) | |
| st.text_area("AI: ", response) | |
| if __name__ == "__main__": | |
| main() |