Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
|
| 4 |
+
@st.cache(allow_output_mutation=True)
|
| 5 |
+
def load_model():
|
| 6 |
+
model_id = "Tech-Meld/Hajax_Chat_1.0-Q3_K_S-GGUF"
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 8 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
| 9 |
+
return model, tokenizer
|
| 10 |
+
|
| 11 |
+
def get_response(input_text, model, tokenizer):
|
| 12 |
+
inputs = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors='pt')
|
| 13 |
+
outputs = model.generate(inputs, max_length=1000, pad_token_id=tokenizer.eos_token_id)
|
| 14 |
+
response = tokenizer.decode(outputs[:, inputs.shape[-1]:][0], skip_special_tokens=True)
|
| 15 |
+
return response
|
| 16 |
+
|
| 17 |
+
def main():
|
| 18 |
+
model, tokenizer = load_model()
|
| 19 |
+
st.title("Chat with AI")
|
| 20 |
+
input_text = st.text_input("You: ", "")
|
| 21 |
+
if st.button("Send"):
|
| 22 |
+
response = get_response(input_text, model, tokenizer)
|
| 23 |
+
st.text_area("AI: ", response)
|
| 24 |
+
|
| 25 |
+
if __name__ == "__main__":
|
| 26 |
+
main()
|