Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor | |
| import spaces | |
| import torch | |
| import re | |
| model = PaliGemmaForConditionalGeneration.from_pretrained("gokaygokay/sd3-long-captioner").to("cuda").eval() | |
| processor = PaliGemmaProcessor.from_pretrained("gokaygokay/sd3-long-captioner") | |
| def modify_caption(caption: str) -> str: | |
| """ | |
| Removes specific prefixes from captions. | |
| Args: | |
| caption (str): A string containing a caption. | |
| Returns: | |
| str: The caption with the prefix removed if it was present. | |
| """ | |
| prefix_substrings = [ | |
| ('captured from ', ''), | |
| ('captured at ', '') | |
| ] | |
| pattern = '|'.join([re.escape(opening) for opening, _ in prefix_substrings]) | |
| replacers = {opening: replacer for opening, replacer in prefix_substrings} | |
| def replace_fn(match): | |
| return replacers[match.group(0)] | |
| return re.sub(pattern, replace_fn, caption, count=1, flags=re.IGNORECASE) | |
| def create_captions_rich(images): | |
| captions = [] | |
| prompt = "caption en" | |
| for image in images: | |
| model_inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda") | |
| input_len = model_inputs["input_ids"].shape[-1] | |
| with torch.inference_mode(): | |
| generation = model.generate(**model_inputs, max_new_tokens=256, do_sample=False) | |
| generation = generation[0][input_len:] | |
| decoded = processor.decode(generation, skip_special_tokens=True) | |
| modified_caption = modify_caption(decoded) | |
| captions.append(modified_caption) | |
| return captions | |
| css = """ | |
| #mkd { | |
| height: 500px; | |
| overflow: auto; | |
| border: 16px solid #ccc; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.HTML("<h1><center>Fine-tuned PaliGemma for SD3 Image Guided Prompt Generation.<center><h1>") | |
| with gr.Tab(label="Image to Prompt for SD3."): | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_imgs = gr.Image(label="Input Images", type="pil", tool="editor", interactive=True, multiple=True) | |
| submit_btn = gr.Button(value="Start") | |
| outputs = gr.Text(label="Prompts", interactive=False) | |
| submit_btn.click(create_captions_rich, [input_imgs], [outputs]) | |
| demo.launch(debug=True) |