Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,63 +1,89 @@
|
|
| 1 |
import torch
|
| 2 |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
| 3 |
from tqdm.auto import tqdm
|
| 4 |
-
from huggingface_hub import
|
| 5 |
import os
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
def display_image(image):
|
| 8 |
-
"""
|
| 9 |
-
|
| 10 |
-
"""
|
| 11 |
-
image.show()
|
| 12 |
|
| 13 |
-
def load_and_merge_lora(base_model_id, lora_id,
|
| 14 |
-
try:
|
| 15 |
pipe = DiffusionPipeline.from_pretrained(
|
| 16 |
-
base_model_id,
|
| 17 |
-
torch_dtype=torch.float16,
|
| 18 |
-
scheduler=DPMSolverMultistepScheduler.from_config(
|
| 19 |
-
pipe.scheduler.config),
|
| 20 |
variant="fp16",
|
| 21 |
use_safetensors=True,
|
| 22 |
).to("cuda")
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
print("LoRA merged successfully!")
|
| 36 |
return pipe
|
|
|
|
| 37 |
except Exception as e:
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
return None
|
| 40 |
|
| 41 |
-
def save_merged_model(pipe, save_path):
|
| 42 |
-
"""Saves the merged model to
|
| 43 |
try:
|
| 44 |
pipe.save_pretrained(save_path)
|
| 45 |
print(f"Merged model saved successfully to: {save_path}")
|
| 46 |
-
except Exception as e:
|
| 47 |
-
print(f"Error saving the merged model: {e}")
|
| 48 |
|
| 49 |
-
if
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
lora_adapter_name = input("Enter the LoRA adapter name: ")
|
| 54 |
|
| 55 |
-
|
|
|
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
|
|
|
|
|
|
| 61 |
image = pipe(
|
| 62 |
prompt,
|
| 63 |
num_inference_steps=30,
|
|
@@ -65,10 +91,31 @@ if __name__ == "__main__":
|
|
| 65 |
generator=torch.manual_seed(0)
|
| 66 |
).images[0]
|
| 67 |
|
| 68 |
-
|
|
|
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
| 3 |
from tqdm.auto import tqdm
|
| 4 |
+
from huggingface_hub import hf_hub_url, login, HfApi, create_repo
|
| 5 |
import os
|
| 6 |
+
import traceback
|
| 7 |
+
from peft import PeftModel
|
| 8 |
+
import gradio as gr
|
| 9 |
|
| 10 |
def display_image(image):
|
| 11 |
+
"""Display the generated image."""
|
| 12 |
+
return image
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
def load_and_merge_lora(base_model_id, lora_id, lora_adapter_name):
|
| 15 |
+
try:
|
| 16 |
pipe = DiffusionPipeline.from_pretrained(
|
| 17 |
+
base_model_id,
|
| 18 |
+
torch_dtype=torch.float16,
|
|
|
|
|
|
|
| 19 |
variant="fp16",
|
| 20 |
use_safetensors=True,
|
| 21 |
).to("cuda")
|
| 22 |
|
| 23 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
| 24 |
+
pipe.scheduler.config
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
# Get the UNet model from the pipeline
|
| 28 |
+
unet = pipe.unet
|
| 29 |
|
| 30 |
+
# Apply PEFT to the UNet model
|
| 31 |
+
unet = PeftModel.from_pretrained(
|
| 32 |
+
unet,
|
| 33 |
+
lora_id,
|
| 34 |
+
torch_dtype=torch.float16,
|
| 35 |
+
adapter_name=lora_adapter_name
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
# Replace the original UNet in the pipeline with the PEFT-loaded one
|
| 39 |
+
pipe.unet = unet
|
| 40 |
|
| 41 |
print("LoRA merged successfully!")
|
| 42 |
return pipe
|
| 43 |
+
|
| 44 |
except Exception as e:
|
| 45 |
+
error_msg = traceback.format_exc()
|
| 46 |
+
print(f"Error merging LoRA: {e}\n\nFull traceback saved to errors.txt")
|
| 47 |
+
|
| 48 |
+
with open("errors.txt", "w") as f:
|
| 49 |
+
f.write(error_msg)
|
| 50 |
+
|
| 51 |
return None
|
| 52 |
|
| 53 |
+
def save_merged_model(pipe, save_path, push_to_hub=False, hf_token=None):
|
| 54 |
+
"""Saves and optionally pushes the merged model to Hugging Face Hub."""
|
| 55 |
try:
|
| 56 |
pipe.save_pretrained(save_path)
|
| 57 |
print(f"Merged model saved successfully to: {save_path}")
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
if push_to_hub:
|
| 60 |
+
if hf_token is None:
|
| 61 |
+
hf_token = input("Enter your Hugging Face write token: ")
|
| 62 |
+
login(token=hf_token)
|
|
|
|
| 63 |
|
| 64 |
+
repo_name = input("Enter the Hugging Face repository name "
|
| 65 |
+
"(e.g., your_username/your_model_name): ")
|
| 66 |
|
| 67 |
+
# Create the repository if it doesn't exist
|
| 68 |
+
create_repo(repo_name, token=hf_token, exist_ok=True)
|
| 69 |
+
|
| 70 |
+
api = HfApi()
|
| 71 |
+
api.upload_folder(
|
| 72 |
+
folder_path=save_path,
|
| 73 |
+
repo_id=repo_name,
|
| 74 |
+
token=hf_token,
|
| 75 |
+
repo_type="model",
|
| 76 |
+
)
|
| 77 |
+
print(f"Model pushed successfully to Hugging Face Hub: {repo_name}")
|
| 78 |
+
|
| 79 |
+
except Exception as e:
|
| 80 |
+
print(f"Error saving/pushing the merged model: {e}")
|
| 81 |
+
|
| 82 |
+
def generate_and_save(base_model_id, lora_id, lora_adapter_name, prompt, lora_scale, save_path, push_to_hub, hf_token):
|
| 83 |
+
pipe = load_and_merge_lora(base_model_id, lora_id, lora_adapter_name)
|
| 84 |
|
| 85 |
+
if pipe:
|
| 86 |
+
lora_scale = float(lora_scale)
|
| 87 |
image = pipe(
|
| 88 |
prompt,
|
| 89 |
num_inference_steps=30,
|
|
|
|
| 91 |
generator=torch.manual_seed(0)
|
| 92 |
).images[0]
|
| 93 |
|
| 94 |
+
image.save("generated_image.png")
|
| 95 |
+
print(f"Image saved to: generated_image.png")
|
| 96 |
|
| 97 |
+
save_merged_model(pipe, save_path, push_to_hub, hf_token)
|
| 98 |
+
|
| 99 |
+
return image, "Image generated and model saved/pushed (if selected)."
|
| 100 |
+
|
| 101 |
+
iface = gr.Interface(
|
| 102 |
+
fn=generate_and_save,
|
| 103 |
+
inputs=[
|
| 104 |
+
gr.Textbox(label="Base Model ID (e.g., stabilityai/stable-diffusion-xl-base-1.0)"),
|
| 105 |
+
gr.Textbox(label="LoRA ID (e.g., your_username/your_lora)"),
|
| 106 |
+
gr.Textbox(label="LoRA Adapter Name"),
|
| 107 |
+
gr.Textbox(label="Prompt"),
|
| 108 |
+
gr.Slider(label="LoRA Scale", minimum=0.0, maximum=1.0, value=0.7, step=0.1),
|
| 109 |
+
gr.Textbox(label="Save Path"),
|
| 110 |
+
gr.Checkbox(label="Push to Hugging Face Hub"),
|
| 111 |
+
gr.Textbox(label="Hugging Face Write Token", type="password")
|
| 112 |
+
],
|
| 113 |
+
outputs=[
|
| 114 |
+
gr.Image(label="Generated Image"),
|
| 115 |
+
gr.Textbox(label="Status")
|
| 116 |
+
],
|
| 117 |
+
title="LoRA Merger and Image Generator",
|
| 118 |
+
description="Merge a LoRA with a base Stable Diffusion model and generate images."
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
iface.launch()
|