Spaces:
Build error
Build error
Add application files and updated Readme
Browse files- .gitattributes +1 -0
- README.md +16 -13
- app.py +170 -0
- data_Excel_format.xlsx +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
data_Excel_format.xlsx filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,13 +1,16 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: ChinesePrivacyPolicyMark
|
| 3 |
-
emoji: 👁
|
| 4 |
-
colorFrom: gray
|
| 5 |
-
colorTo: purple
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 5.5.0
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
short_description: Mark Chinese Privacy Policy with Retrieve models
|
| 11 |
-
---
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: ChinesePrivacyPolicyMark
|
| 3 |
+
emoji: 👁
|
| 4 |
+
colorFrom: gray
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.5.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
short_description: Mark Chinese Privacy Policy with Retrieve models
|
| 11 |
+
---
|
| 12 |
+
使用的数据地址:https://github.com/EnlightenedAI/CAPP-130<br>
|
| 13 |
+
使用预训练好的模型检索预先保存好的隐私政策,以此标注隐私政策中的关键信息。<br>
|
| 14 |
+
首先使用特征提取模型将隐私政策中的句子进行tokenize,将其与保存的向量对比进行一次“粗筛”,选取与其最为接近的n条记录。<br>
|
| 15 |
+
之后使用文本相似度计算模型,将筛选出来的n条记录与原本的文本进行匹配,过滤出相似度高于阈值p的m条记录,将这m条记录所属的标记合并起来。<br>
|
| 16 |
+
由于没有使用GPU,直接在Space中运行会很慢。有条件可以clone下来试试。
|
app.py
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import warnings
|
| 3 |
+
warnings.filterwarnings("ignore")
|
| 4 |
+
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import numpy as np
|
| 7 |
+
import faiss
|
| 8 |
+
import ast
|
| 9 |
+
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
import torch
|
| 12 |
+
from transformers import AutoModel, AutoTokenizer
|
| 13 |
+
|
| 14 |
+
Encoding_model = 'jinaai/jina-embeddings-v2-base-zh'
|
| 15 |
+
model = AutoModel.from_pretrained(Encoding_model, trust_remote_code=True, torch_dtype=torch.bfloat16)
|
| 16 |
+
model#.to("cuda")
|
| 17 |
+
|
| 18 |
+
similarity_model = 'Alibaba-NLP/gte-multilingual-base'
|
| 19 |
+
similarity_tokenizer = AutoTokenizer.from_pretrained(similarity_model)
|
| 20 |
+
similarity_model = AutoModel.from_pretrained(similarity_model, trust_remote_code=True)#.to("cuda")
|
| 21 |
+
|
| 22 |
+
def get_not_empty_data(df,x_column="text",y_column="label"):
|
| 23 |
+
df = df[df[y_column] != "[]"].reset_index(drop=True)
|
| 24 |
+
res_dict = {}
|
| 25 |
+
for idx in df.index:
|
| 26 |
+
if df.loc[idx,x_column] not in res_dict:
|
| 27 |
+
res_dict[df.loc[idx,x_column]] = ast.literal_eval(df.loc[idx,y_column])
|
| 28 |
+
else:
|
| 29 |
+
res_dict[df.loc[idx,x_column]] += ast.literal_eval(df.loc[idx,y_column])
|
| 30 |
+
res_dict = {k:list(set(v)) for k,v in res_dict.items()}
|
| 31 |
+
df_dict = pd.DataFrame({"x":res_dict.keys(),"y":res_dict.values()})
|
| 32 |
+
return df_dict
|
| 33 |
+
|
| 34 |
+
data_all = pd.read_excel("data_Excel_format.xlsx")
|
| 35 |
+
df_dict_all = get_not_empty_data(data_all)
|
| 36 |
+
x_dict = df_dict_all["x"].values
|
| 37 |
+
y_dict = df_dict_all["y"].values
|
| 38 |
+
|
| 39 |
+
def calc_scores(x):
|
| 40 |
+
return (x[:1] @ x[1:].T)
|
| 41 |
+
|
| 42 |
+
def get_idxs(threshold,max_len,arr):
|
| 43 |
+
res = np.where(arr >= threshold)[0]
|
| 44 |
+
if len(res)<max_len:
|
| 45 |
+
return res
|
| 46 |
+
res = res[np.argsort(-arr[res])][:3]
|
| 47 |
+
return res
|
| 48 |
+
|
| 49 |
+
def merge_set_to_list(set_list):
|
| 50 |
+
res = set()
|
| 51 |
+
for i in set_list:
|
| 52 |
+
res = res | i
|
| 53 |
+
return res
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def get_predict_result(index,score,threshold,max_len):
|
| 57 |
+
score = score.flatten()
|
| 58 |
+
index = index.flatten()
|
| 59 |
+
index_of_index = np.where(score >= threshold)[0]
|
| 60 |
+
if len(index_of_index)>=max_len:
|
| 61 |
+
index_of_index = index_of_index[np.argsort(-index[index_of_index])][:3]
|
| 62 |
+
if len(index_of_index)==0:
|
| 63 |
+
return {},[]
|
| 64 |
+
res_index = index[index_of_index]
|
| 65 |
+
res = merge_set_to_list([set(i) for i in y_dict[res_index]])
|
| 66 |
+
return res,x_dict[res_index]
|
| 67 |
+
|
| 68 |
+
vec = np.empty(shape=[0,768],dtype="float32")
|
| 69 |
+
bsize = 256
|
| 70 |
+
with torch.no_grad():
|
| 71 |
+
for i in range(0,len(x),bsize):
|
| 72 |
+
tmp = model.encode(x[i:i+bsize])
|
| 73 |
+
vec = np.concatenate([vec,tmp])
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
index = faiss.IndexFlatIP(768)
|
| 77 |
+
faiss.normalize_L2(vec)
|
| 78 |
+
index.add(vec)
|
| 79 |
+
faiss.write_index(index,"all_index.faiss")
|
| 80 |
+
index = faiss.read_index("all_index.faiss")
|
| 81 |
+
|
| 82 |
+
def predict_label(x,threshold=0.85,n_nearest=10,max_result_len=3):
|
| 83 |
+
bsize=1
|
| 84 |
+
y_pred = []
|
| 85 |
+
with torch.no_grad():
|
| 86 |
+
for i in range(0,len(x),bsize):
|
| 87 |
+
sentences = x[i:i+bsize]
|
| 88 |
+
vec = model.encode(sentences)
|
| 89 |
+
faiss.normalize_L2(vec)
|
| 90 |
+
scores, indexes = index.search(vec,n_nearest)
|
| 91 |
+
x_pred = np.array([[sentences[j]]+s.tolist() for j,s in enumerate(x_dict[indexes])])
|
| 92 |
+
batch_dict = similarity_tokenizer(x_pred.flatten().tolist(), max_length=768, padding=True, truncation=True, return_tensors='pt')#.to("cuda")
|
| 93 |
+
outputs = similarity_model(**batch_dict)
|
| 94 |
+
dimension=768
|
| 95 |
+
embeddings = outputs.last_hidden_state[:, 0][:dimension]
|
| 96 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
| 97 |
+
embeddings = embeddings.view(len(x_pred),n_nearest+1,dimension).detach().cpu().numpy()
|
| 98 |
+
scores = [calc_scores(embeddings[b]) for b in range(embeddings.shape[0])]
|
| 99 |
+
|
| 100 |
+
pred = [get_predict_result(indexes[k],scores[k],threshold=threshold,max_len=max_result_len) for k in range(len(scores))]
|
| 101 |
+
y_pred.append([i[0] for i in pred])
|
| 102 |
+
return y_pred
|
| 103 |
+
|
| 104 |
+
CSS_Content = """
|
| 105 |
+
<!DOCTYPE html>
|
| 106 |
+
<html lang="en">
|
| 107 |
+
<head>
|
| 108 |
+
<meta charset="UTF-8">
|
| 109 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 110 |
+
<style>
|
| 111 |
+
#custom_id {
|
| 112 |
+
border: 2px solid red;
|
| 113 |
+
padding: 10px;
|
| 114 |
+
background-color: lightgray;
|
| 115 |
+
}
|
| 116 |
+
</style>
|
| 117 |
+
</head>
|
| 118 |
+
</html>
|
| 119 |
+
<span style="color: red;line-height:1;">红色字体:潜在风险</span><br>
|
| 120 |
+
<span style="color: blue;line-height:1;">蓝色字体:权限获取</span><br>
|
| 121 |
+
<span style="color: purple;line-height:1;">紫色字体:数据收集</span><br>
|
| 122 |
+
<span style="color: green;line-height:1;">绿色字体:数据、权限管理</span><br>
|
| 123 |
+
<span style="color: brown;line-height:1;">棕色字体:共享、委托、转让、公开(披露)</span><br>
|
| 124 |
+
"""
|
| 125 |
+
|
| 126 |
+
color_dict = {"潜在风险":"red",
|
| 127 |
+
"权限获取":"blue",
|
| 128 |
+
"数据收集":"purple",
|
| 129 |
+
"数据、权限管理":"green",
|
| 130 |
+
"共享、委托、转让、公开(披露)":"brown"
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def generate_HTML(text,threshold=0.85,n_nearest=10,max_result_len=3):
|
| 136 |
+
sentences = text.split("\n")
|
| 137 |
+
sentences = [i for i in map(lambda x:x.split("。"),sentences)]
|
| 138 |
+
res = CSS_Content
|
| 139 |
+
for paragraph in sentences:
|
| 140 |
+
tmp_res = []
|
| 141 |
+
pred_label = predict_label(paragraph,threshold,n_nearest,max_result_len)
|
| 142 |
+
for i,x in enumerate(pred_label):
|
| 143 |
+
pre = "<span"
|
| 144 |
+
if len(x[0])>0:
|
| 145 |
+
for j in color_dict.keys(): #color dict重要性递减,所以只取第一个标签的颜色
|
| 146 |
+
if j in x[0]:
|
| 147 |
+
pre += f' style="color: {color_dict[j]};line-height:1;"'
|
| 148 |
+
break
|
| 149 |
+
tmp_res.append(pre+">"+paragraph[i]+"</span>")
|
| 150 |
+
res += "。".join(tmp_res)
|
| 151 |
+
res += "<br>"
|
| 152 |
+
return res
|
| 153 |
+
|
| 154 |
+
with gr.Blocks() as demo:
|
| 155 |
+
with gr.Row():
|
| 156 |
+
input_text = gr.Textbox(lines=25,label="输入")
|
| 157 |
+
|
| 158 |
+
with gr.Row():
|
| 159 |
+
threshold = gr.Slider(minimum=0.5,maximum=0.85,value=0.75,step=0.05,interactive=True,label="相似度阈值")
|
| 160 |
+
n_nearest = gr.Slider(minimum=3,maximum=10,value=10,step=1,interactive=True,label="粗筛语句数量")
|
| 161 |
+
max_result_len = gr.Slider(minimum=1,maximum=5,value=3,step=1,interactive=True,label="精筛语句数量")
|
| 162 |
+
with gr.Row():
|
| 163 |
+
submit_button = gr.Button("检测")
|
| 164 |
+
with gr.Row():
|
| 165 |
+
output_text = gr.HTML(CSS_Content)
|
| 166 |
+
output_text.elem_id="custom_id"
|
| 167 |
+
|
| 168 |
+
submit_button.click(fn=generate_HTML, inputs=[input_text,threshold,n_nearest,max_result_len], outputs=output_text)
|
| 169 |
+
|
| 170 |
+
demo.launch()
|
data_Excel_format.xlsx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:db4b6d314555c48bc00053a4e581960e1991625d7962f3b88e00dd04c3233a6b
|
| 3 |
+
size 2846032
|