Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +51 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments
|
| 4 |
+
from sklearn.metrics import classification_report
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
# Load few-shot dataset
|
| 8 |
+
dataset = load_dataset("ai4bharat/sangraha")
|
| 9 |
+
train_data = dataset["train"].select(range(30))
|
| 10 |
+
test_data = dataset["validation"].select(range(10))
|
| 11 |
+
|
| 12 |
+
# Tokenizer and preprocessing
|
| 13 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
| 14 |
+
|
| 15 |
+
def tokenize(example):
|
| 16 |
+
return tokenizer(example["context"], padding="max_length", truncation=True)
|
| 17 |
+
|
| 18 |
+
def encode_label(example):
|
| 19 |
+
example["label"] = 1 if "bank" in example["context"].lower() else 0
|
| 20 |
+
return example
|
| 21 |
+
|
| 22 |
+
train_data = train_data.map(tokenize).map(encode_label)
|
| 23 |
+
test_data = test_data.map(tokenize).map(encode_label)
|
| 24 |
+
|
| 25 |
+
train_data.set_format("torch", columns=["input_ids", "attention_mask", "label"])
|
| 26 |
+
test_data.set_format("torch", columns=["input_ids", "attention_mask", "label"])
|
| 27 |
+
|
| 28 |
+
# Model and trainer
|
| 29 |
+
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)
|
| 30 |
+
|
| 31 |
+
training_args = TrainingArguments(
|
| 32 |
+
output_dir="./results",
|
| 33 |
+
num_train_epochs=3,
|
| 34 |
+
per_device_train_batch_size=4,
|
| 35 |
+
per_device_eval_batch_size=4,
|
| 36 |
+
evaluation_strategy="epoch",
|
| 37 |
+
logging_dir="./logs"
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
trainer = Trainer(
|
| 41 |
+
model=model,
|
| 42 |
+
args=training_args,
|
| 43 |
+
train_dataset=train_data,
|
| 44 |
+
eval_dataset=test_data,
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
trainer.train()
|
| 48 |
+
metrics = trainer.evaluate()
|
| 49 |
+
|
| 50 |
+
predictions = trainer.predict(test_data).predictions.argmax(-1)
|
| 51 |
+
print(classification_report(test_data["label"], predictions))
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
transformers
|
| 3 |
+
datasets
|
| 4 |
+
scikit-learn
|
| 5 |
+
torch
|