Spaces:
Running
Running
Upload 3 files
Browse files- app.py +149 -0
- header.html +13 -0
- requirements.txt +12 -0
app.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import diffusers
|
| 4 |
+
from diffusers.models import AutoencoderKL
|
| 5 |
+
|
| 6 |
+
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse")
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def read_content(file_path: str) -> str:
|
| 10 |
+
"""read the content of target file
|
| 11 |
+
"""
|
| 12 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
| 13 |
+
content = f.read()
|
| 14 |
+
|
| 15 |
+
return content
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def predict(prompt, negative_prompt, guidance_scale, num_inference_steps,model, scheduler, lora, lora_weight):
|
| 19 |
+
pipeline = diffusers.DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V6.0_B1_noVAE", vae=vae).to("cuda")
|
| 20 |
+
pipeline.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
|
| 21 |
+
if model == "Realistic_V5.1":
|
| 22 |
+
pipeline = diffusers.DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V5.1_noVAE", vae=vae).to("cuda")
|
| 23 |
+
if model == "Realistic_V5.0":
|
| 24 |
+
pipeline = diffusers.DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V5.0_noVAE", vae=vae).to("cuda")
|
| 25 |
+
if model == "EpicRealism":
|
| 26 |
+
pipeline = diffusers.DiffusionPipeline.from_pretrained("emilianJR/epiCRealism", vae=vae).to("cuda")
|
| 27 |
+
pipeline.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
|
| 28 |
+
|
| 29 |
+
scheduler_class_name = scheduler.split("-")[0]
|
| 30 |
+
add_kwargs = {}
|
| 31 |
+
if len(scheduler.split("-")) > 1:
|
| 32 |
+
add_kwargs["use_karras_sigmas"] = True
|
| 33 |
+
if len(scheduler.split("-")) > 2:
|
| 34 |
+
add_kwargs["algorithm_type"] = "sde-dpmsolver++"
|
| 35 |
+
scheduler = getattr(diffusers, scheduler_class_name)
|
| 36 |
+
|
| 37 |
+
pipeline.scheduler = scheduler.from_pretrained("emilianJR/epiCRealism", subfolder="scheduler", **add_kwargs)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
if lora == "nayanthara":
|
| 41 |
+
lora = "profaker/Naya_lora"
|
| 42 |
+
if lora == "saipallavi":
|
| 43 |
+
lora = "profaker/saipallavi_lora"
|
| 44 |
+
if lora == "shobita":
|
| 45 |
+
lora = "profaker/Shobita_lora"
|
| 46 |
+
if lora == "surya":
|
| 47 |
+
lora = "profaker/Surya_lora"
|
| 48 |
+
if lora == "vijay":
|
| 49 |
+
lora = "profaker/Vijay_lora"
|
| 50 |
+
if lora == "None":
|
| 51 |
+
images = pipeline(
|
| 52 |
+
prompt=prompt,
|
| 53 |
+
negative_prompt=negative_prompt,
|
| 54 |
+
num_inference_steps=int(num_inference_steps),
|
| 55 |
+
guidance_scale=guidance_scale,
|
| 56 |
+
clip_skip=1
|
| 57 |
+
).images[0]
|
| 58 |
+
print("Prompt", prompt)
|
| 59 |
+
print("Negative", negative_prompt)
|
| 60 |
+
print("Steps", num_inference_steps)
|
| 61 |
+
print("Scale", guidance_scale)
|
| 62 |
+
print("Scheduler", scheduler)
|
| 63 |
+
return images
|
| 64 |
+
|
| 65 |
+
pipeline.load_lora_weights(lora)
|
| 66 |
+
|
| 67 |
+
images = pipeline(
|
| 68 |
+
prompt=prompt,
|
| 69 |
+
negative_prompt=negative_prompt,
|
| 70 |
+
num_inference_steps=int(num_inference_steps),
|
| 71 |
+
guidance_scale=guidance_scale,
|
| 72 |
+
cross_attention_kwargs={"scale": lora_weight}
|
| 73 |
+
).images[0]
|
| 74 |
+
|
| 75 |
+
print("Prompt", prompt)
|
| 76 |
+
print("Negative", negative_prompt)
|
| 77 |
+
print("Steps", num_inference_steps)
|
| 78 |
+
print("Scale", guidance_scale)
|
| 79 |
+
print("Scheduler", scheduler)
|
| 80 |
+
|
| 81 |
+
return images
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
css = '''
|
| 85 |
+
.gradio-container{max-width: 1100px !important}
|
| 86 |
+
#image_upload{min-height:400px}
|
| 87 |
+
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
|
| 88 |
+
#mask_radio .gr-form{background:transparent; border: none}
|
| 89 |
+
#word_mask{margin-top: .75em !important}
|
| 90 |
+
#word_mask textarea:disabled{opacity: 0.3}
|
| 91 |
+
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
|
| 92 |
+
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
|
| 93 |
+
.dark .footer {border-color: #303030}
|
| 94 |
+
.dark .footer>p {background: #0b0f19}
|
| 95 |
+
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
|
| 96 |
+
#image_upload .touch-none{display: flex}
|
| 97 |
+
@keyframes spin {
|
| 98 |
+
from {
|
| 99 |
+
transform: rotate(0deg);
|
| 100 |
+
}
|
| 101 |
+
to {
|
| 102 |
+
transform: rotate(360deg);
|
| 103 |
+
}
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
#prompt-container{margin-top:-18px;}
|
| 107 |
+
#prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0}
|
| 108 |
+
'''
|
| 109 |
+
|
| 110 |
+
image_blocks = gr.Blocks(css=css, elem_id="total-container")
|
| 111 |
+
with image_blocks as demo:
|
| 112 |
+
gr.HTML(read_content("header.html"))
|
| 113 |
+
with gr.Row():
|
| 114 |
+
with gr.Column():
|
| 115 |
+
with gr.Row(elem_id="prompt-container", equal_height=True):
|
| 116 |
+
with gr.Row():
|
| 117 |
+
prompt = gr.Textbox(placeholder="Your prompt", show_label=False, elem_id="prompt", lines=5)
|
| 118 |
+
|
| 119 |
+
with gr.Accordion(label="Advanced Settings", open=False):
|
| 120 |
+
with gr.Row(equal_height=True):
|
| 121 |
+
guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale")
|
| 122 |
+
steps = gr.Number(value=40, minimum=0, maximum=100, step=1, label="steps")
|
| 123 |
+
with gr.Row(equal_height=True):
|
| 124 |
+
negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt",
|
| 125 |
+
info="what you don't want to see in the image")
|
| 126 |
+
with gr.Row(equal_height=True):
|
| 127 |
+
models = ['Realistic_V6.0','Realistic_V5.1','Realistic_V5.0','EpicRealism']
|
| 128 |
+
model = gr.Dropdown(label="Models",choices=models,value="Realistic_V6.0")
|
| 129 |
+
with gr.Row(equal_height=True):
|
| 130 |
+
schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler",
|
| 131 |
+
"DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras",
|
| 132 |
+
"DPMSolverMultistepScheduler-Karras-SDE"]
|
| 133 |
+
scheduler = gr.Dropdown(label="Schedulers", choices=schedulers,
|
| 134 |
+
value="DPMSolverMultistepScheduler-Karras")
|
| 135 |
+
with gr.Row(equal_height=True):
|
| 136 |
+
loras = ['None','add_detail','nayanthara','shobita','surya','vijay','saipallavi']
|
| 137 |
+
lora = gr.Dropdown(label='Lora', choices=loras, value="None")
|
| 138 |
+
lora_weight = gr.Number(value=0.5, minimum=0, maximum=1, step=0.01, label="Lora Weights")
|
| 139 |
+
with gr.Row(equal_height=True):
|
| 140 |
+
btn = gr.Button("Generate", elem_id="run_button")
|
| 141 |
+
|
| 142 |
+
with gr.Column():
|
| 143 |
+
image_out = gr.Image(label="Output", elem_id="output-img", height=1024, width=512)
|
| 144 |
+
btn.click(fn=predict, inputs=[prompt, negative_prompt, guidance_scale, steps, model,scheduler, lora, lora_weight],
|
| 145 |
+
outputs=[image_out], api_name='run')
|
| 146 |
+
prompt.submit(fn=predict, inputs=[prompt, negative_prompt, guidance_scale, steps, model,scheduler, lora, lora_weight],
|
| 147 |
+
outputs=[image_out])
|
| 148 |
+
|
| 149 |
+
image_blocks.queue(max_size=25, api_open=True).launch(show_api=True)
|
header.html
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
|
| 2 |
+
<div style="
|
| 3 |
+
display: inline-flex;
|
| 4 |
+
gap: 0.8rem;
|
| 5 |
+
font-size: 1.75rem;
|
| 6 |
+
justify-content: center;
|
| 7 |
+
margin-bottom: 10px;
|
| 8 |
+
">
|
| 9 |
+
<h1 style="font-weight: 900; align-items: center; margin-bottom: 7px; margin-top: 20px;">
|
| 10 |
+
<b>Profaker⛥</b>
|
| 11 |
+
</h1>
|
| 12 |
+
</div>
|
| 13 |
+
</div>
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
--extra-index-url https://download.pytorch.org/whl/cu118
|
| 2 |
+
torch
|
| 3 |
+
git+https://github.com/huggingface/diffusers.git
|
| 4 |
+
transformers
|
| 5 |
+
accelerate
|
| 6 |
+
gradio==3.50.0
|
| 7 |
+
ftfy
|
| 8 |
+
numpy
|
| 9 |
+
matplotlib
|
| 10 |
+
uuid
|
| 11 |
+
opencv-python
|
| 12 |
+
safetensors
|