Update server.py
Browse files
server.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
from fastapi import FastAPI
|
| 2 |
from joblib import load
|
| 3 |
from concrete.ml.deployment import FHEModelServer
|
|
@@ -9,7 +10,6 @@ current_dir = Path(__file__).parent
|
|
| 9 |
|
| 10 |
# Load the model
|
| 11 |
fhe_model = FHEModelServer("deployment/financial_rating")
|
| 12 |
-
fhe_legal_model=FHEModelServer("deployment/legal_rating")
|
| 13 |
|
| 14 |
class PredictRequest(BaseModel):
|
| 15 |
evaluation_key: str
|
|
@@ -29,17 +29,6 @@ def predict_sentiment(query: PredictRequest):
|
|
| 29 |
evaluation_key = base64.b64decode(query.evaluation_key)
|
| 30 |
prediction = fhe_model.run(encrypted_encoding, evaluation_key)
|
| 31 |
|
| 32 |
-
# Encode base64 the prediction
|
| 33 |
-
encoded_prediction = base64.b64encode(prediction).decode()
|
| 34 |
-
return {"encrypted_prediction": encoded_prediction}
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
@app.post("/legal_rating")
|
| 38 |
-
def predict_sentiment(query: PredictRequest):
|
| 39 |
-
encrypted_encoding = base64.b64decode(query.encrypted_encoding)
|
| 40 |
-
evaluation_key = base64.b64decode(query.evaluation_key)
|
| 41 |
-
prediction = fhe_legal_model.run(encrypted_encoding, evaluation_key)
|
| 42 |
-
|
| 43 |
# Encode base64 the prediction
|
| 44 |
encoded_prediction = base64.b64encode(prediction).decode()
|
| 45 |
return {"encrypted_prediction": encoded_prediction}
|
|
|
|
| 1 |
+
"""Server that will listen for GET requests from the client."""
|
| 2 |
from fastapi import FastAPI
|
| 3 |
from joblib import load
|
| 4 |
from concrete.ml.deployment import FHEModelServer
|
|
|
|
| 10 |
|
| 11 |
# Load the model
|
| 12 |
fhe_model = FHEModelServer("deployment/financial_rating")
|
|
|
|
| 13 |
|
| 14 |
class PredictRequest(BaseModel):
|
| 15 |
evaluation_key: str
|
|
|
|
| 29 |
evaluation_key = base64.b64decode(query.evaluation_key)
|
| 30 |
prediction = fhe_model.run(encrypted_encoding, evaluation_key)
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
# Encode base64 the prediction
|
| 33 |
encoded_prediction = base64.b64encode(prediction).decode()
|
| 34 |
return {"encrypted_prediction": encoded_prediction}
|