Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import json
|
| 4 |
+
from tokenizers import Tokenizer
|
| 5 |
+
from huggingface_hub import hf_hub_download
|
| 6 |
+
from ModelArchitecture import Transformer, ModelConfig, generate
|
| 7 |
+
from safetensors.torch import load_file
|
| 8 |
+
|
| 9 |
+
# Load model
|
| 10 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 11 |
+
REPO_ID = "VirtualInsight/Lumen"
|
| 12 |
+
|
| 13 |
+
model_path = hf_hub_download(repo_id=REPO_ID, filename="model.safetensors")
|
| 14 |
+
tokenizer_path = hf_hub_download(repo_id=REPO_ID, filename="tokenizer.json")
|
| 15 |
+
config_path = hf_hub_download(repo_id=REPO_ID, filename="config.json")
|
| 16 |
+
|
| 17 |
+
tokenizer = Tokenizer.from_file(tokenizer_path)
|
| 18 |
+
with open(config_path) as f:
|
| 19 |
+
config = ModelConfig(**json.load(f))
|
| 20 |
+
|
| 21 |
+
model = Transformer(config).to(device)
|
| 22 |
+
model.load_state_dict(load_file(model_path, device=str(device)), strict=False)
|
| 23 |
+
model.eval()
|
| 24 |
+
|
| 25 |
+
@torch.no_grad()
|
| 26 |
+
def generate_text(prompt, max_tokens=100, temperature=0.7, top_p=0.9):
|
| 27 |
+
input_ids = torch.tensor(tokenizer.encode(prompt).ids).unsqueeze(0).to(device)
|
| 28 |
+
output_ids = generate(model, input_ids, max_tokens, temperature, top_p=top_p, device=device)
|
| 29 |
+
return tokenizer.decode(output_ids[0, input_ids.size(1):].cpu().tolist())
|
| 30 |
+
|
| 31 |
+
# Gradio Interface
|
| 32 |
+
demo = gr.Interface(
|
| 33 |
+
fn=generate_text,
|
| 34 |
+
inputs=[
|
| 35 |
+
gr.Textbox(label="Prompt", placeholder="Once upon a time...", lines=3),
|
| 36 |
+
gr.Slider(10, 500, value=100, label="Max Tokens"),
|
| 37 |
+
gr.Slider(0.1, 2.0, value=0.7, label="Temperature"),
|
| 38 |
+
gr.Slider(0.1, 1.0, value=0.9, label="Top-p"),
|
| 39 |
+
],
|
| 40 |
+
outputs=gr.Textbox(label="Generated Text", lines=10),
|
| 41 |
+
title="🌟 Lumen Language Model",
|
| 42 |
+
description="Generate text using the Lumen language model",
|
| 43 |
+
examples=[
|
| 44 |
+
["Once upon a time", 100, 0.7, 0.9],
|
| 45 |
+
["The future of AI is", 150, 0.8, 0.95],
|
| 46 |
+
]
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
if __name__ == "__main__":
|
| 50 |
+
demo.launch()
|