Upload 6 files
Browse files- models/detectron2/diver_detector_setup.py +37 -0
- models/detectron2/platform_detector_setup.py +51 -0
- models/detectron2/splash_detector_setup.py +45 -0
- models/detectron2/springboard_detector_setup.py +52 -0
- models/pose_estimator/pose_estimator_model_setup.py +198 -0
- models/pose_estimator/pose_hrnet.py +501 -0
models/detectron2/diver_detector_setup.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys, os, distutils.core
|
| 2 |
+
|
| 3 |
+
# os.system('python -m pip install pyyaml==5.3.1')
|
| 4 |
+
# dist = distutils.core.run_setup("./detectron2/setup.py")
|
| 5 |
+
# temp = ' '.join([f"'{x}'" for x in dist.install_requires])
|
| 6 |
+
# cmd = "python -m pip install {0}".format(temp)
|
| 7 |
+
# os.system(cmd)
|
| 8 |
+
sys.path.insert(0, os.path.abspath('./detectron2'))
|
| 9 |
+
|
| 10 |
+
import detectron2
|
| 11 |
+
import cv2
|
| 12 |
+
|
| 13 |
+
from detectron2.utils.logger import setup_logger
|
| 14 |
+
setup_logger()
|
| 15 |
+
|
| 16 |
+
# from detectron2.modeling import build_model
|
| 17 |
+
from detectron2 import model_zoo
|
| 18 |
+
from detectron2.engine import DefaultPredictor
|
| 19 |
+
from detectron2.config import get_cfg
|
| 20 |
+
from detectron2.utils.visualizer import Visualizer
|
| 21 |
+
from detectron2.data import MetadataCatalog, DatasetCatalog
|
| 22 |
+
from detectron2.checkpoint import DetectionCheckpointer
|
| 23 |
+
from detectron2.data.datasets import register_coco_instances
|
| 24 |
+
|
| 25 |
+
def get_diver_detector():
|
| 26 |
+
cfg = get_cfg()
|
| 27 |
+
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
|
| 28 |
+
cfg.OUTPUT_DIR = "./output/diver/"
|
| 29 |
+
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth") # path to the model we just trained
|
| 30 |
+
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set a custom testing threshold
|
| 31 |
+
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 128 # The "RoIHead batch size". 128 is faster, and good enough for this toy dataset (default: 512)
|
| 32 |
+
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1 # only has one class (ballon). (see https://detectron2.readthedocs.io/tutorials/datasets.html#update-the-config-for-new-datasets)
|
| 33 |
+
diver_detector = DefaultPredictor(cfg)
|
| 34 |
+
return diver_detector
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
models/detectron2/platform_detector_setup.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys, os, distutils.core
|
| 2 |
+
|
| 3 |
+
# os.system('python -m pip install pyyaml==5.3.1')
|
| 4 |
+
# dist = distutils.core.run_setup("./detectron2/setup.py")
|
| 5 |
+
# temp = ' '.join([f"'{x}'" for x in dist.install_requires])
|
| 6 |
+
# cmd = "python -m pip install {0}".format(temp)
|
| 7 |
+
# os.system(cmd)
|
| 8 |
+
sys.path.insert(0, os.path.abspath('./detectron2'))
|
| 9 |
+
|
| 10 |
+
import detectron2
|
| 11 |
+
import cv2
|
| 12 |
+
|
| 13 |
+
from detectron2.utils.logger import setup_logger
|
| 14 |
+
setup_logger()
|
| 15 |
+
|
| 16 |
+
# from detectron2.modeling import build_model
|
| 17 |
+
from detectron2 import model_zoo
|
| 18 |
+
from detectron2.engine import DefaultPredictor
|
| 19 |
+
from detectron2.config import get_cfg
|
| 20 |
+
from detectron2.utils.visualizer import Visualizer
|
| 21 |
+
from detectron2.data import MetadataCatalog, DatasetCatalog
|
| 22 |
+
from detectron2.checkpoint import DetectionCheckpointer
|
| 23 |
+
from detectron2.data.datasets import register_coco_instances
|
| 24 |
+
|
| 25 |
+
def get_platform_detector():
|
| 26 |
+
cfg = get_cfg()
|
| 27 |
+
cfg.OUTPUT_DIR = "./output/platform/"
|
| 28 |
+
# model = build_model(cfg) # returns a torch.nn.Module
|
| 29 |
+
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
|
| 30 |
+
cfg.DATASETS.TEST = ()
|
| 31 |
+
cfg.DATALOADER.NUM_WORKERS = 2
|
| 32 |
+
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") # Let training initialize from model zoo
|
| 33 |
+
cfg.SOLVER.IMS_PER_BATCH = 2 # This is the real "batch size" commonly known to deep learning people
|
| 34 |
+
cfg.SOLVER.BASE_LR = 0.00025 # pick a good LR
|
| 35 |
+
cfg.SOLVER.MAX_ITER = 300 # 300 iterations seems good enough for this toy dataset; you will need to train longer for a practical dataset
|
| 36 |
+
cfg.SOLVER.STEPS = [] # do not decay learning rate
|
| 37 |
+
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 128 # The "RoIHead batch size". 128 is faster, and good enough for this toy dataset (default: 512)
|
| 38 |
+
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2
|
| 39 |
+
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth") # path to the model we just trained
|
| 40 |
+
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set a custom testing threshold
|
| 41 |
+
predictor = DefaultPredictor(cfg)
|
| 42 |
+
return predictor
|
| 43 |
+
|
| 44 |
+
# register_coco_instances("springboard_trains", {}, "./coco_annotations/springboard/train.json", "../data/Boards/spring")
|
| 45 |
+
# register_coco_instances("springboard_vals", {}, "./coco_annotations/springboard/val.json", "../data/Boards/spring")
|
| 46 |
+
|
| 47 |
+
# from detectron2.utils.visualizer import ColorMode
|
| 48 |
+
# splash_metadata = MetadataCatalog.get('springboard_vals')
|
| 49 |
+
# dataset_dicts = DatasetCatalog.get("springboard_vals")
|
| 50 |
+
|
| 51 |
+
|
models/detectron2/splash_detector_setup.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys, os, distutils.core
|
| 2 |
+
|
| 3 |
+
# os.system('python -m pip install pyyaml==5.3.1')
|
| 4 |
+
# dist = distutils.core.run_setup("./detectron2/setup.py")
|
| 5 |
+
# temp = ' '.join([f"'{x}'" for x in dist.install_requires])
|
| 6 |
+
# cmd = "python -m pip install {0}".format(temp)
|
| 7 |
+
# os.system(cmd)
|
| 8 |
+
sys.path.insert(0, os.path.abspath('./detectron2'))
|
| 9 |
+
|
| 10 |
+
import detectron2
|
| 11 |
+
import cv2
|
| 12 |
+
|
| 13 |
+
from detectron2.utils.logger import setup_logger
|
| 14 |
+
setup_logger()
|
| 15 |
+
|
| 16 |
+
# from detectron2.modeling import build_model
|
| 17 |
+
from detectron2 import model_zoo
|
| 18 |
+
from detectron2.engine import DefaultPredictor
|
| 19 |
+
from detectron2.config import get_cfg
|
| 20 |
+
from detectron2.utils.visualizer import Visualizer
|
| 21 |
+
from detectron2.data import MetadataCatalog, DatasetCatalog
|
| 22 |
+
from detectron2.utils.visualizer import Visualizer
|
| 23 |
+
from detectron2.checkpoint import DetectionCheckpointer
|
| 24 |
+
from detectron2.data.datasets import register_coco_instances
|
| 25 |
+
|
| 26 |
+
def get_splash_detector():
|
| 27 |
+
cfg = get_cfg()
|
| 28 |
+
cfg.OUTPUT_DIR = "./output/splash/"
|
| 29 |
+
# model = build_model(cfg) # returns a torch.nn.Module
|
| 30 |
+
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
|
| 31 |
+
cfg.DATASETS.TRAIN = ("splash_trains",)
|
| 32 |
+
cfg.DATASETS.TEST = ()
|
| 33 |
+
cfg.DATALOADER.NUM_WORKERS = 2
|
| 34 |
+
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") # Let training initialize from model zoo
|
| 35 |
+
cfg.SOLVER.IMS_PER_BATCH = 2 # This is the real "batch size" commonly known to deep learning people
|
| 36 |
+
cfg.SOLVER.BASE_LR = 0.00025 # pick a good LR
|
| 37 |
+
cfg.SOLVER.MAX_ITER = 300 # 300 iterations seems good enough for this toy dataset; you will need to train longer for a practical dataset
|
| 38 |
+
cfg.SOLVER.STEPS = [] # do not decay learning rate
|
| 39 |
+
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 128 # The "RoIHead batch size". 128 is faster, and good enough for this toy dataset (default: 512)
|
| 40 |
+
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2
|
| 41 |
+
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth") # path to the model we just trained
|
| 42 |
+
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set a custom testing threshold
|
| 43 |
+
predictor = DefaultPredictor(cfg)
|
| 44 |
+
return predictor
|
| 45 |
+
|
models/detectron2/springboard_detector_setup.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys, os, distutils.core
|
| 2 |
+
|
| 3 |
+
# os.system('python -m pip install pyyaml==5.3.1')
|
| 4 |
+
# dist = distutils.core.run_setup("./detectron2/setup.py")
|
| 5 |
+
# temp = ' '.join([f"'{x}'" for x in dist.install_requires])
|
| 6 |
+
# cmd = "python -m pip install {0}".format(temp)
|
| 7 |
+
# os.system(cmd)
|
| 8 |
+
sys.path.insert(0, os.path.abspath('./detectron2'))
|
| 9 |
+
|
| 10 |
+
import detectron2
|
| 11 |
+
import cv2
|
| 12 |
+
|
| 13 |
+
from detectron2.utils.logger import setup_logger
|
| 14 |
+
setup_logger()
|
| 15 |
+
|
| 16 |
+
# from detectron2.modeling import build_model
|
| 17 |
+
from detectron2 import model_zoo
|
| 18 |
+
from detectron2.engine import DefaultPredictor
|
| 19 |
+
from detectron2.config import get_cfg
|
| 20 |
+
from detectron2.utils.visualizer import Visualizer
|
| 21 |
+
from detectron2.data import MetadataCatalog, DatasetCatalog
|
| 22 |
+
from detectron2.utils.visualizer import Visualizer
|
| 23 |
+
from detectron2.checkpoint import DetectionCheckpointer
|
| 24 |
+
from detectron2.data.datasets import register_coco_instances
|
| 25 |
+
|
| 26 |
+
def get_springboard_detector():
|
| 27 |
+
cfg = get_cfg()
|
| 28 |
+
cfg.OUTPUT_DIR = "./output/springboard/"
|
| 29 |
+
# model = build_model(cfg) # returns a torch.nn.Module
|
| 30 |
+
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
|
| 31 |
+
cfg.DATASETS.TEST = ()
|
| 32 |
+
cfg.DATALOADER.NUM_WORKERS = 2
|
| 33 |
+
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") # Let training initialize from model zoo
|
| 34 |
+
cfg.SOLVER.IMS_PER_BATCH = 2 # This is the real "batch size" commonly known to deep learning people
|
| 35 |
+
cfg.SOLVER.BASE_LR = 0.00025 # pick a good LR
|
| 36 |
+
cfg.SOLVER.MAX_ITER = 300 # 300 iterations seems good enough for this toy dataset; you will need to train longer for a practical dataset
|
| 37 |
+
cfg.SOLVER.STEPS = [] # do not decay learning rate
|
| 38 |
+
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 128 # The "RoIHead batch size". 128 is faster, and good enough for this toy dataset (default: 512)
|
| 39 |
+
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1
|
| 40 |
+
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth") # path to the model we just trained
|
| 41 |
+
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set a custom testing threshold
|
| 42 |
+
predictor = DefaultPredictor(cfg)
|
| 43 |
+
return predictor
|
| 44 |
+
|
| 45 |
+
# register_coco_instances("springboard_trains", {}, "./coco_annotations/springboard/train.json", "../data/Boards/spring")
|
| 46 |
+
# register_coco_instances("springboard_vals", {}, "./coco_annotations/springboard/val.json", "../data/Boards/spring")
|
| 47 |
+
|
| 48 |
+
# from detectron2.utils.visualizer import ColorMode
|
| 49 |
+
# splash_metadata = MetadataCatalog.get('springboard_vals')
|
| 50 |
+
# dataset_dicts = DatasetCatalog.get("springboard_vals")
|
| 51 |
+
|
| 52 |
+
|
models/pose_estimator/pose_estimator_model_setup.py
ADDED
|
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import absolute_import
|
| 2 |
+
from __future__ import division
|
| 3 |
+
from __future__ import print_function
|
| 4 |
+
|
| 5 |
+
import argparse
|
| 6 |
+
import csv
|
| 7 |
+
import os
|
| 8 |
+
import shutil
|
| 9 |
+
import sys
|
| 10 |
+
|
| 11 |
+
from PIL import Image
|
| 12 |
+
import torch
|
| 13 |
+
import torch.nn.parallel
|
| 14 |
+
import torch.backends.cudnn as cudnn
|
| 15 |
+
import torch.optim
|
| 16 |
+
import torch.utils.data
|
| 17 |
+
import torch.utils.data.distributed
|
| 18 |
+
import torchvision.transforms as transforms
|
| 19 |
+
import torchvision
|
| 20 |
+
import cv2
|
| 21 |
+
import numpy as np
|
| 22 |
+
import time
|
| 23 |
+
sys.path.append('./deep-high-resolution-net.pytorch/lib')
|
| 24 |
+
import models
|
| 25 |
+
from config import cfg
|
| 26 |
+
from config import update_config
|
| 27 |
+
from core.function import get_final_preds
|
| 28 |
+
from utils.transforms import get_affine_transform
|
| 29 |
+
|
| 30 |
+
import distutils.core
|
| 31 |
+
|
| 32 |
+
# os.system('python -m pip install pyyaml==5.3.1')
|
| 33 |
+
# dist = distutils.core.run_setup("./detectron2/setup.py")
|
| 34 |
+
# temp = ' '.join([f"'{x}'" for x in dist.install_requires])
|
| 35 |
+
# cmd = "python -m pip install {0}".format(temp)
|
| 36 |
+
# os.system(cmd)
|
| 37 |
+
# sys.path.insert(0, os.path.abspath('./detectron2'))
|
| 38 |
+
|
| 39 |
+
# import detectron2
|
| 40 |
+
# # from detectron2.modeling import build_model
|
| 41 |
+
# from detectron2 import model_zoo
|
| 42 |
+
# from detectron2.engine import DefaultPredictor
|
| 43 |
+
# from detectron2.config import get_cfg
|
| 44 |
+
# from detectron2.utils.visualizer import Visualizer
|
| 45 |
+
# from detectron2.data import MetadataCatalog, DatasetCatalog
|
| 46 |
+
# from detectron2.utils.visualizer import Visualizer
|
| 47 |
+
# from detectron2.checkpoint import DetectionCheckpointer
|
| 48 |
+
# from detectron2.data.datasets import register_coco_instances
|
| 49 |
+
# from detectron2.utils.visualizer import ColorMode
|
| 50 |
+
from models.detectron2.diver_detector_setup import get_diver_detector
|
| 51 |
+
from models.pose_estimator.pose_hrnet import get_pose_net
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def box_to_center_scale(box, model_image_width, model_image_height):
|
| 55 |
+
"""convert a box to center,scale information required for pose transformation
|
| 56 |
+
Parameters
|
| 57 |
+
----------
|
| 58 |
+
box : list of tuple
|
| 59 |
+
list of length 2 with two tuples of floats representing
|
| 60 |
+
bottom left and top right corner of a box
|
| 61 |
+
model_image_width : int
|
| 62 |
+
model_image_height : int
|
| 63 |
+
|
| 64 |
+
Returns
|
| 65 |
+
-------
|
| 66 |
+
(numpy array, numpy array)
|
| 67 |
+
Two numpy arrays, coordinates for the center of the box and the scale of the box
|
| 68 |
+
"""
|
| 69 |
+
center = np.zeros((2), dtype=np.float32)
|
| 70 |
+
|
| 71 |
+
bottom_left_corner = (box[0].data.cpu().item(), box[1].data.cpu().item())
|
| 72 |
+
top_right_corner = (box[2].data.cpu().item(), box[3].data.cpu().item())
|
| 73 |
+
box_width = top_right_corner[0]-bottom_left_corner[0]
|
| 74 |
+
box_height = top_right_corner[1]-bottom_left_corner[1]
|
| 75 |
+
bottom_left_x = bottom_left_corner[0]
|
| 76 |
+
bottom_left_y = bottom_left_corner[1]
|
| 77 |
+
center[0] = bottom_left_x + box_width * 0.5
|
| 78 |
+
center[1] = bottom_left_y + box_height * 0.5
|
| 79 |
+
|
| 80 |
+
aspect_ratio = model_image_width * 1.0 / model_image_height
|
| 81 |
+
pixel_std = 200
|
| 82 |
+
|
| 83 |
+
if box_width > aspect_ratio * box_height:
|
| 84 |
+
box_height = box_width * 1.0 / aspect_ratio
|
| 85 |
+
elif box_width < aspect_ratio * box_height:
|
| 86 |
+
box_width = box_height * aspect_ratio
|
| 87 |
+
scale = np.array(
|
| 88 |
+
[box_width * 1.0 / pixel_std, box_height * 1.0 / pixel_std],
|
| 89 |
+
dtype=np.float32)
|
| 90 |
+
if center[0] != -1:
|
| 91 |
+
scale = scale * 1.25
|
| 92 |
+
|
| 93 |
+
return center, scale
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def parse_args():
|
| 97 |
+
parser = argparse.ArgumentParser(description='Train keypoints network')
|
| 98 |
+
# general
|
| 99 |
+
parser.add_argument('--cfg', type=str, default='./deep-high-resolution-net.pytorch/experiments/mpii/hrnet/w32_256x256_adam_lr1e-3.yaml')
|
| 100 |
+
parser.add_argument('opts',
|
| 101 |
+
help='Modify config options using the command-line',
|
| 102 |
+
default=None,
|
| 103 |
+
nargs=argparse.REMAINDER)
|
| 104 |
+
|
| 105 |
+
args = parser.parse_args()
|
| 106 |
+
|
| 107 |
+
# args expected by supporting codebase
|
| 108 |
+
args.modelDir = ''
|
| 109 |
+
args.logDir = ''
|
| 110 |
+
args.dataDir = ''
|
| 111 |
+
args.prevModelDir = ''
|
| 112 |
+
return args
|
| 113 |
+
|
| 114 |
+
def get_pose_estimation_prediction(pose_model, image, center, scale):
|
| 115 |
+
rotation = 0
|
| 116 |
+
trans = get_affine_transform(center, scale, rotation, cfg.MODEL.IMAGE_SIZE)
|
| 117 |
+
# trans = cv2.getAffineTransform(srcTri, dstTri)
|
| 118 |
+
transform = transforms.Compose([
|
| 119 |
+
transforms.ToTensor(),
|
| 120 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
| 121 |
+
std=[0.229, 0.224, 0.225]),
|
| 122 |
+
])
|
| 123 |
+
model_input = cv2.warpAffine(
|
| 124 |
+
image,
|
| 125 |
+
trans,
|
| 126 |
+
(256, 256),
|
| 127 |
+
flags=cv2.INTER_LINEAR)
|
| 128 |
+
|
| 129 |
+
# pose estimation inference
|
| 130 |
+
model_input = transform(model_input).unsqueeze(0)
|
| 131 |
+
# switch to evaluate mode
|
| 132 |
+
pose_model.eval()
|
| 133 |
+
with torch.no_grad():
|
| 134 |
+
# compute output heatmap
|
| 135 |
+
output = pose_model(model_input)
|
| 136 |
+
preds, _ = get_final_preds(
|
| 137 |
+
cfg,
|
| 138 |
+
output.clone().cpu().numpy(),
|
| 139 |
+
np.asarray([center]),
|
| 140 |
+
np.asarray([scale]))
|
| 141 |
+
return preds
|
| 142 |
+
|
| 143 |
+
def get_pose_model():
|
| 144 |
+
CTX = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
| 145 |
+
cudnn.benchmark = cfg.CUDNN.BENCHMARK
|
| 146 |
+
torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC
|
| 147 |
+
torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED
|
| 148 |
+
args = parse_args()
|
| 149 |
+
update_config(cfg, args)
|
| 150 |
+
pose_model = get_pose_net(cfg, is_train=False)
|
| 151 |
+
if cfg.TEST.MODEL_FILE:
|
| 152 |
+
print('=> loading model from {}'.format(cfg.TEST.MODEL_FILE))
|
| 153 |
+
pose_model.load_state_dict(torch.load(cfg.TEST.MODEL_FILE), strict=False)
|
| 154 |
+
else:
|
| 155 |
+
print('expected model defined in config at TEST.MODEL_FILE')
|
| 156 |
+
pose_model = torch.nn.DataParallel(pose_model, device_ids=cfg.GPUS)
|
| 157 |
+
pose_model.to(CTX)
|
| 158 |
+
pose_model.eval()
|
| 159 |
+
return pose_model
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def get_pose_estimation(filepath, image_bgr=None, diver_detector=None, pose_model=None):
|
| 163 |
+
if image_bgr is None:
|
| 164 |
+
image_bgr = cv2.imread(filepath)
|
| 165 |
+
if image_bgr is None:
|
| 166 |
+
print("ERROR: image {} does not exist".format(filepath))
|
| 167 |
+
return None
|
| 168 |
+
if diver_detector is None:
|
| 169 |
+
diver_detector = get_diver_detector()
|
| 170 |
+
|
| 171 |
+
if pose_model is None:
|
| 172 |
+
pose_model = get_pose_model()
|
| 173 |
+
|
| 174 |
+
image = image_bgr[:, :, [2, 1, 0]]
|
| 175 |
+
|
| 176 |
+
outputs = diver_detector(image_bgr)
|
| 177 |
+
scores = outputs['instances'].scores
|
| 178 |
+
pred_boxes = []
|
| 179 |
+
if len(scores) > 0:
|
| 180 |
+
pred_boxes = outputs['instances'].pred_boxes
|
| 181 |
+
|
| 182 |
+
if len(pred_boxes) >= 1:
|
| 183 |
+
for box in pred_boxes:
|
| 184 |
+
center, scale = box_to_center_scale(box, cfg.MODEL.IMAGE_SIZE[0], cfg.MODEL.IMAGE_SIZE[1])
|
| 185 |
+
image_pose = image.copy() if cfg.DATASET.COLOR_RGB else image_bgr.copy()
|
| 186 |
+
box = box.detach().cpu().numpy()
|
| 187 |
+
return box, get_pose_estimation_prediction(pose_model, image_pose, center, scale)
|
| 188 |
+
# print("pose_preds", pose_preds)
|
| 189 |
+
# draw_bbox(box,image_bgr)
|
| 190 |
+
# if len(pose_preds)>=1:
|
| 191 |
+
# print('drawing preds')
|
| 192 |
+
# for kpt in pose_preds:
|
| 193 |
+
# draw_pose(kpt,image_bgr) # draw the poses
|
| 194 |
+
# break # only want to use the box with the highest confidence score
|
| 195 |
+
return None, None
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
|
models/pose_estimator/pose_hrnet.py
ADDED
|
@@ -0,0 +1,501 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ------------------------------------------------------------------------------
|
| 2 |
+
# Copyright (c) Microsoft
|
| 3 |
+
# Licensed under the MIT License.
|
| 4 |
+
# Written by Bin Xiao ([email protected])
|
| 5 |
+
# ------------------------------------------------------------------------------
|
| 6 |
+
|
| 7 |
+
from __future__ import absolute_import
|
| 8 |
+
from __future__ import division
|
| 9 |
+
from __future__ import print_function
|
| 10 |
+
|
| 11 |
+
import os
|
| 12 |
+
import logging
|
| 13 |
+
|
| 14 |
+
import torch
|
| 15 |
+
import torch.nn as nn
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
BN_MOMENTUM = 0.1
|
| 19 |
+
logger = logging.getLogger(__name__)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def conv3x3(in_planes, out_planes, stride=1):
|
| 23 |
+
"""3x3 convolution with padding"""
|
| 24 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
| 25 |
+
padding=1, bias=False)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class BasicBlock(nn.Module):
|
| 29 |
+
expansion = 1
|
| 30 |
+
|
| 31 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
| 32 |
+
super(BasicBlock, self).__init__()
|
| 33 |
+
self.conv1 = conv3x3(inplanes, planes, stride)
|
| 34 |
+
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
|
| 35 |
+
self.relu = nn.ReLU(inplace=True)
|
| 36 |
+
self.conv2 = conv3x3(planes, planes)
|
| 37 |
+
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
|
| 38 |
+
self.downsample = downsample
|
| 39 |
+
self.stride = stride
|
| 40 |
+
|
| 41 |
+
def forward(self, x):
|
| 42 |
+
residual = x
|
| 43 |
+
|
| 44 |
+
out = self.conv1(x)
|
| 45 |
+
out = self.bn1(out)
|
| 46 |
+
out = self.relu(out)
|
| 47 |
+
|
| 48 |
+
out = self.conv2(out)
|
| 49 |
+
out = self.bn2(out)
|
| 50 |
+
|
| 51 |
+
if self.downsample is not None:
|
| 52 |
+
residual = self.downsample(x)
|
| 53 |
+
|
| 54 |
+
out += residual
|
| 55 |
+
out = self.relu(out)
|
| 56 |
+
|
| 57 |
+
return out
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class Bottleneck(nn.Module):
|
| 61 |
+
expansion = 4
|
| 62 |
+
|
| 63 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
| 64 |
+
super(Bottleneck, self).__init__()
|
| 65 |
+
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
| 66 |
+
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
|
| 67 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
|
| 68 |
+
padding=1, bias=False)
|
| 69 |
+
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
|
| 70 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,
|
| 71 |
+
bias=False)
|
| 72 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion,
|
| 73 |
+
momentum=BN_MOMENTUM)
|
| 74 |
+
self.relu = nn.ReLU(inplace=True)
|
| 75 |
+
self.downsample = downsample
|
| 76 |
+
self.stride = stride
|
| 77 |
+
|
| 78 |
+
def forward(self, x):
|
| 79 |
+
residual = x
|
| 80 |
+
|
| 81 |
+
out = self.conv1(x)
|
| 82 |
+
out = self.bn1(out)
|
| 83 |
+
out = self.relu(out)
|
| 84 |
+
|
| 85 |
+
out = self.conv2(out)
|
| 86 |
+
out = self.bn2(out)
|
| 87 |
+
out = self.relu(out)
|
| 88 |
+
|
| 89 |
+
out = self.conv3(out)
|
| 90 |
+
out = self.bn3(out)
|
| 91 |
+
|
| 92 |
+
if self.downsample is not None:
|
| 93 |
+
residual = self.downsample(x)
|
| 94 |
+
|
| 95 |
+
out += residual
|
| 96 |
+
out = self.relu(out)
|
| 97 |
+
|
| 98 |
+
return out
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
class HighResolutionModule(nn.Module):
|
| 102 |
+
def __init__(self, num_branches, blocks, num_blocks, num_inchannels,
|
| 103 |
+
num_channels, fuse_method, multi_scale_output=True):
|
| 104 |
+
super(HighResolutionModule, self).__init__()
|
| 105 |
+
self._check_branches(
|
| 106 |
+
num_branches, blocks, num_blocks, num_inchannels, num_channels)
|
| 107 |
+
|
| 108 |
+
self.num_inchannels = num_inchannels
|
| 109 |
+
self.fuse_method = fuse_method
|
| 110 |
+
self.num_branches = num_branches
|
| 111 |
+
|
| 112 |
+
self.multi_scale_output = multi_scale_output
|
| 113 |
+
|
| 114 |
+
self.branches = self._make_branches(
|
| 115 |
+
num_branches, blocks, num_blocks, num_channels)
|
| 116 |
+
self.fuse_layers = self._make_fuse_layers()
|
| 117 |
+
self.relu = nn.ReLU(True)
|
| 118 |
+
|
| 119 |
+
def _check_branches(self, num_branches, blocks, num_blocks,
|
| 120 |
+
num_inchannels, num_channels):
|
| 121 |
+
if num_branches != len(num_blocks):
|
| 122 |
+
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format(
|
| 123 |
+
num_branches, len(num_blocks))
|
| 124 |
+
logger.error(error_msg)
|
| 125 |
+
raise ValueError(error_msg)
|
| 126 |
+
|
| 127 |
+
if num_branches != len(num_channels):
|
| 128 |
+
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format(
|
| 129 |
+
num_branches, len(num_channels))
|
| 130 |
+
logger.error(error_msg)
|
| 131 |
+
raise ValueError(error_msg)
|
| 132 |
+
|
| 133 |
+
if num_branches != len(num_inchannels):
|
| 134 |
+
error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format(
|
| 135 |
+
num_branches, len(num_inchannels))
|
| 136 |
+
logger.error(error_msg)
|
| 137 |
+
raise ValueError(error_msg)
|
| 138 |
+
|
| 139 |
+
def _make_one_branch(self, branch_index, block, num_blocks, num_channels,
|
| 140 |
+
stride=1):
|
| 141 |
+
downsample = None
|
| 142 |
+
if stride != 1 or \
|
| 143 |
+
self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion:
|
| 144 |
+
downsample = nn.Sequential(
|
| 145 |
+
nn.Conv2d(
|
| 146 |
+
self.num_inchannels[branch_index],
|
| 147 |
+
num_channels[branch_index] * block.expansion,
|
| 148 |
+
kernel_size=1, stride=stride, bias=False
|
| 149 |
+
),
|
| 150 |
+
nn.BatchNorm2d(
|
| 151 |
+
num_channels[branch_index] * block.expansion,
|
| 152 |
+
momentum=BN_MOMENTUM
|
| 153 |
+
),
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
layers = []
|
| 157 |
+
layers.append(
|
| 158 |
+
block(
|
| 159 |
+
self.num_inchannels[branch_index],
|
| 160 |
+
num_channels[branch_index],
|
| 161 |
+
stride,
|
| 162 |
+
downsample
|
| 163 |
+
)
|
| 164 |
+
)
|
| 165 |
+
self.num_inchannels[branch_index] = \
|
| 166 |
+
num_channels[branch_index] * block.expansion
|
| 167 |
+
for i in range(1, num_blocks[branch_index]):
|
| 168 |
+
layers.append(
|
| 169 |
+
block(
|
| 170 |
+
self.num_inchannels[branch_index],
|
| 171 |
+
num_channels[branch_index]
|
| 172 |
+
)
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
return nn.Sequential(*layers)
|
| 176 |
+
|
| 177 |
+
def _make_branches(self, num_branches, block, num_blocks, num_channels):
|
| 178 |
+
branches = []
|
| 179 |
+
|
| 180 |
+
for i in range(num_branches):
|
| 181 |
+
branches.append(
|
| 182 |
+
self._make_one_branch(i, block, num_blocks, num_channels)
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
return nn.ModuleList(branches)
|
| 186 |
+
|
| 187 |
+
def _make_fuse_layers(self):
|
| 188 |
+
if self.num_branches == 1:
|
| 189 |
+
return None
|
| 190 |
+
|
| 191 |
+
num_branches = self.num_branches
|
| 192 |
+
num_inchannels = self.num_inchannels
|
| 193 |
+
fuse_layers = []
|
| 194 |
+
for i in range(num_branches if self.multi_scale_output else 1):
|
| 195 |
+
fuse_layer = []
|
| 196 |
+
for j in range(num_branches):
|
| 197 |
+
if j > i:
|
| 198 |
+
fuse_layer.append(
|
| 199 |
+
nn.Sequential(
|
| 200 |
+
nn.Conv2d(
|
| 201 |
+
num_inchannels[j],
|
| 202 |
+
num_inchannels[i],
|
| 203 |
+
1, 1, 0, bias=False
|
| 204 |
+
),
|
| 205 |
+
nn.BatchNorm2d(num_inchannels[i]),
|
| 206 |
+
nn.Upsample(scale_factor=2**(j-i), mode='nearest')
|
| 207 |
+
)
|
| 208 |
+
)
|
| 209 |
+
elif j == i:
|
| 210 |
+
fuse_layer.append(None)
|
| 211 |
+
else:
|
| 212 |
+
conv3x3s = []
|
| 213 |
+
for k in range(i-j):
|
| 214 |
+
if k == i - j - 1:
|
| 215 |
+
num_outchannels_conv3x3 = num_inchannels[i]
|
| 216 |
+
conv3x3s.append(
|
| 217 |
+
nn.Sequential(
|
| 218 |
+
nn.Conv2d(
|
| 219 |
+
num_inchannels[j],
|
| 220 |
+
num_outchannels_conv3x3,
|
| 221 |
+
3, 2, 1, bias=False
|
| 222 |
+
),
|
| 223 |
+
nn.BatchNorm2d(num_outchannels_conv3x3)
|
| 224 |
+
)
|
| 225 |
+
)
|
| 226 |
+
else:
|
| 227 |
+
num_outchannels_conv3x3 = num_inchannels[j]
|
| 228 |
+
conv3x3s.append(
|
| 229 |
+
nn.Sequential(
|
| 230 |
+
nn.Conv2d(
|
| 231 |
+
num_inchannels[j],
|
| 232 |
+
num_outchannels_conv3x3,
|
| 233 |
+
3, 2, 1, bias=False
|
| 234 |
+
),
|
| 235 |
+
nn.BatchNorm2d(num_outchannels_conv3x3),
|
| 236 |
+
nn.ReLU(True)
|
| 237 |
+
)
|
| 238 |
+
)
|
| 239 |
+
fuse_layer.append(nn.Sequential(*conv3x3s))
|
| 240 |
+
fuse_layers.append(nn.ModuleList(fuse_layer))
|
| 241 |
+
|
| 242 |
+
return nn.ModuleList(fuse_layers)
|
| 243 |
+
|
| 244 |
+
def get_num_inchannels(self):
|
| 245 |
+
return self.num_inchannels
|
| 246 |
+
|
| 247 |
+
def forward(self, x):
|
| 248 |
+
if self.num_branches == 1:
|
| 249 |
+
return [self.branches[0](x[0])]
|
| 250 |
+
|
| 251 |
+
for i in range(self.num_branches):
|
| 252 |
+
x[i] = self.branches[i](x[i])
|
| 253 |
+
|
| 254 |
+
x_fuse = []
|
| 255 |
+
|
| 256 |
+
for i in range(len(self.fuse_layers)):
|
| 257 |
+
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0])
|
| 258 |
+
for j in range(1, self.num_branches):
|
| 259 |
+
if i == j:
|
| 260 |
+
y = y + x[j]
|
| 261 |
+
else:
|
| 262 |
+
y = y + self.fuse_layers[i][j](x[j])
|
| 263 |
+
x_fuse.append(self.relu(y))
|
| 264 |
+
|
| 265 |
+
return x_fuse
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
blocks_dict = {
|
| 269 |
+
'BASIC': BasicBlock,
|
| 270 |
+
'BOTTLENECK': Bottleneck
|
| 271 |
+
}
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
class PoseHighResolutionNet(nn.Module):
|
| 275 |
+
|
| 276 |
+
def __init__(self, cfg, **kwargs):
|
| 277 |
+
self.inplanes = 64
|
| 278 |
+
extra = cfg['MODEL']['EXTRA']
|
| 279 |
+
super(PoseHighResolutionNet, self).__init__()
|
| 280 |
+
|
| 281 |
+
# stem net
|
| 282 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1,
|
| 283 |
+
bias=False)
|
| 284 |
+
self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM)
|
| 285 |
+
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1,
|
| 286 |
+
bias=False)
|
| 287 |
+
self.bn2 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM)
|
| 288 |
+
self.relu = nn.ReLU(inplace=True)
|
| 289 |
+
self.layer1 = self._make_layer(Bottleneck, 64, 4)
|
| 290 |
+
|
| 291 |
+
self.stage2_cfg = extra['STAGE2']
|
| 292 |
+
num_channels = self.stage2_cfg['NUM_CHANNELS']
|
| 293 |
+
block = blocks_dict[self.stage2_cfg['BLOCK']]
|
| 294 |
+
num_channels = [
|
| 295 |
+
num_channels[i] * block.expansion for i in range(len(num_channels))
|
| 296 |
+
]
|
| 297 |
+
self.transition1 = self._make_transition_layer([256], num_channels)
|
| 298 |
+
self.stage2, pre_stage_channels = self._make_stage(
|
| 299 |
+
self.stage2_cfg, num_channels)
|
| 300 |
+
|
| 301 |
+
self.stage3_cfg = extra['STAGE3']
|
| 302 |
+
num_channels = self.stage3_cfg['NUM_CHANNELS']
|
| 303 |
+
block = blocks_dict[self.stage3_cfg['BLOCK']]
|
| 304 |
+
num_channels = [
|
| 305 |
+
num_channels[i] * block.expansion for i in range(len(num_channels))
|
| 306 |
+
]
|
| 307 |
+
self.transition2 = self._make_transition_layer(
|
| 308 |
+
pre_stage_channels, num_channels)
|
| 309 |
+
self.stage3, pre_stage_channels = self._make_stage(
|
| 310 |
+
self.stage3_cfg, num_channels)
|
| 311 |
+
|
| 312 |
+
self.stage4_cfg = extra['STAGE4']
|
| 313 |
+
num_channels = self.stage4_cfg['NUM_CHANNELS']
|
| 314 |
+
block = blocks_dict[self.stage4_cfg['BLOCK']]
|
| 315 |
+
num_channels = [
|
| 316 |
+
num_channels[i] * block.expansion for i in range(len(num_channels))
|
| 317 |
+
]
|
| 318 |
+
self.transition3 = self._make_transition_layer(
|
| 319 |
+
pre_stage_channels, num_channels)
|
| 320 |
+
self.stage4, pre_stage_channels = self._make_stage(
|
| 321 |
+
self.stage4_cfg, num_channels, multi_scale_output=False)
|
| 322 |
+
|
| 323 |
+
self.final_layer = nn.Conv2d(
|
| 324 |
+
in_channels=pre_stage_channels[0],
|
| 325 |
+
out_channels=cfg['MODEL']['NUM_JOINTS'],
|
| 326 |
+
kernel_size=extra['FINAL_CONV_KERNEL'],
|
| 327 |
+
stride=1,
|
| 328 |
+
padding=1 if extra['FINAL_CONV_KERNEL'] == 3 else 0
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
self.pretrained_layers = extra['PRETRAINED_LAYERS']
|
| 332 |
+
|
| 333 |
+
def _make_transition_layer(
|
| 334 |
+
self, num_channels_pre_layer, num_channels_cur_layer):
|
| 335 |
+
num_branches_cur = len(num_channels_cur_layer)
|
| 336 |
+
num_branches_pre = len(num_channels_pre_layer)
|
| 337 |
+
|
| 338 |
+
transition_layers = []
|
| 339 |
+
for i in range(num_branches_cur):
|
| 340 |
+
if i < num_branches_pre:
|
| 341 |
+
if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
|
| 342 |
+
transition_layers.append(
|
| 343 |
+
nn.Sequential(
|
| 344 |
+
nn.Conv2d(
|
| 345 |
+
num_channels_pre_layer[i],
|
| 346 |
+
num_channels_cur_layer[i],
|
| 347 |
+
3, 1, 1, bias=False
|
| 348 |
+
),
|
| 349 |
+
nn.BatchNorm2d(num_channels_cur_layer[i]),
|
| 350 |
+
nn.ReLU(inplace=True)
|
| 351 |
+
)
|
| 352 |
+
)
|
| 353 |
+
else:
|
| 354 |
+
transition_layers.append(None)
|
| 355 |
+
else:
|
| 356 |
+
conv3x3s = []
|
| 357 |
+
for j in range(i+1-num_branches_pre):
|
| 358 |
+
inchannels = num_channels_pre_layer[-1]
|
| 359 |
+
outchannels = num_channels_cur_layer[i] \
|
| 360 |
+
if j == i-num_branches_pre else inchannels
|
| 361 |
+
conv3x3s.append(
|
| 362 |
+
nn.Sequential(
|
| 363 |
+
nn.Conv2d(
|
| 364 |
+
inchannels, outchannels, 3, 2, 1, bias=False
|
| 365 |
+
),
|
| 366 |
+
nn.BatchNorm2d(outchannels),
|
| 367 |
+
nn.ReLU(inplace=True)
|
| 368 |
+
)
|
| 369 |
+
)
|
| 370 |
+
transition_layers.append(nn.Sequential(*conv3x3s))
|
| 371 |
+
|
| 372 |
+
return nn.ModuleList(transition_layers)
|
| 373 |
+
|
| 374 |
+
def _make_layer(self, block, planes, blocks, stride=1):
|
| 375 |
+
downsample = None
|
| 376 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
| 377 |
+
downsample = nn.Sequential(
|
| 378 |
+
nn.Conv2d(
|
| 379 |
+
self.inplanes, planes * block.expansion,
|
| 380 |
+
kernel_size=1, stride=stride, bias=False
|
| 381 |
+
),
|
| 382 |
+
nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM),
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
layers = []
|
| 386 |
+
layers.append(block(self.inplanes, planes, stride, downsample))
|
| 387 |
+
self.inplanes = planes * block.expansion
|
| 388 |
+
for i in range(1, blocks):
|
| 389 |
+
layers.append(block(self.inplanes, planes))
|
| 390 |
+
|
| 391 |
+
return nn.Sequential(*layers)
|
| 392 |
+
|
| 393 |
+
def _make_stage(self, layer_config, num_inchannels,
|
| 394 |
+
multi_scale_output=True):
|
| 395 |
+
num_modules = layer_config['NUM_MODULES']
|
| 396 |
+
num_branches = layer_config['NUM_BRANCHES']
|
| 397 |
+
num_blocks = layer_config['NUM_BLOCKS']
|
| 398 |
+
num_channels = layer_config['NUM_CHANNELS']
|
| 399 |
+
block = blocks_dict[layer_config['BLOCK']]
|
| 400 |
+
fuse_method = layer_config['FUSE_METHOD']
|
| 401 |
+
|
| 402 |
+
modules = []
|
| 403 |
+
for i in range(num_modules):
|
| 404 |
+
# multi_scale_output is only used last module
|
| 405 |
+
if not multi_scale_output and i == num_modules - 1:
|
| 406 |
+
reset_multi_scale_output = False
|
| 407 |
+
else:
|
| 408 |
+
reset_multi_scale_output = True
|
| 409 |
+
|
| 410 |
+
modules.append(
|
| 411 |
+
HighResolutionModule(
|
| 412 |
+
num_branches,
|
| 413 |
+
block,
|
| 414 |
+
num_blocks,
|
| 415 |
+
num_inchannels,
|
| 416 |
+
num_channels,
|
| 417 |
+
fuse_method,
|
| 418 |
+
reset_multi_scale_output
|
| 419 |
+
)
|
| 420 |
+
)
|
| 421 |
+
num_inchannels = modules[-1].get_num_inchannels()
|
| 422 |
+
|
| 423 |
+
return nn.Sequential(*modules), num_inchannels
|
| 424 |
+
|
| 425 |
+
def forward(self, x):
|
| 426 |
+
x = self.conv1(x)
|
| 427 |
+
x = self.bn1(x)
|
| 428 |
+
x = self.relu(x)
|
| 429 |
+
x = self.conv2(x)
|
| 430 |
+
x = self.bn2(x)
|
| 431 |
+
x = self.relu(x)
|
| 432 |
+
x = self.layer1(x)
|
| 433 |
+
|
| 434 |
+
x_list = []
|
| 435 |
+
for i in range(self.stage2_cfg['NUM_BRANCHES']):
|
| 436 |
+
if self.transition1[i] is not None:
|
| 437 |
+
x_list.append(self.transition1[i](x))
|
| 438 |
+
else:
|
| 439 |
+
x_list.append(x)
|
| 440 |
+
y_list = self.stage2(x_list)
|
| 441 |
+
|
| 442 |
+
x_list = []
|
| 443 |
+
for i in range(self.stage3_cfg['NUM_BRANCHES']):
|
| 444 |
+
if self.transition2[i] is not None:
|
| 445 |
+
x_list.append(self.transition2[i](y_list[-1]))
|
| 446 |
+
else:
|
| 447 |
+
x_list.append(y_list[i])
|
| 448 |
+
y_list = self.stage3(x_list)
|
| 449 |
+
|
| 450 |
+
x_list = []
|
| 451 |
+
for i in range(self.stage4_cfg['NUM_BRANCHES']):
|
| 452 |
+
if self.transition3[i] is not None:
|
| 453 |
+
x_list.append(self.transition3[i](y_list[-1]))
|
| 454 |
+
else:
|
| 455 |
+
x_list.append(y_list[i])
|
| 456 |
+
y_list = self.stage4(x_list)
|
| 457 |
+
|
| 458 |
+
x = self.final_layer(y_list[0])
|
| 459 |
+
|
| 460 |
+
return x
|
| 461 |
+
|
| 462 |
+
def init_weights(self, pretrained=''):
|
| 463 |
+
logger.info('=> init weights from normal distribution')
|
| 464 |
+
for m in self.modules():
|
| 465 |
+
if isinstance(m, nn.Conv2d):
|
| 466 |
+
# nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
| 467 |
+
nn.init.normal_(m.weight, std=0.001)
|
| 468 |
+
for name, _ in m.named_parameters():
|
| 469 |
+
if name in ['bias']:
|
| 470 |
+
nn.init.constant_(m.bias, 0)
|
| 471 |
+
elif isinstance(m, nn.BatchNorm2d):
|
| 472 |
+
nn.init.constant_(m.weight, 1)
|
| 473 |
+
nn.init.constant_(m.bias, 0)
|
| 474 |
+
elif isinstance(m, nn.ConvTranspose2d):
|
| 475 |
+
nn.init.normal_(m.weight, std=0.001)
|
| 476 |
+
for name, _ in m.named_parameters():
|
| 477 |
+
if name in ['bias']:
|
| 478 |
+
nn.init.constant_(m.bias, 0)
|
| 479 |
+
|
| 480 |
+
if os.path.isfile(pretrained):
|
| 481 |
+
pretrained_state_dict = torch.load(pretrained)
|
| 482 |
+
logger.info('=> loading pretrained model {}'.format(pretrained))
|
| 483 |
+
|
| 484 |
+
need_init_state_dict = {}
|
| 485 |
+
for name, m in pretrained_state_dict.items():
|
| 486 |
+
if name.split('.')[0] in self.pretrained_layers \
|
| 487 |
+
or self.pretrained_layers[0] is '*':
|
| 488 |
+
need_init_state_dict[name] = m
|
| 489 |
+
self.load_state_dict(need_init_state_dict, strict=False)
|
| 490 |
+
elif pretrained:
|
| 491 |
+
logger.error('=> please download pre-trained models first!')
|
| 492 |
+
raise ValueError('{} is not exist!'.format(pretrained))
|
| 493 |
+
|
| 494 |
+
|
| 495 |
+
def get_pose_net(cfg, is_train, **kwargs):
|
| 496 |
+
model = PoseHighResolutionNet(cfg, **kwargs)
|
| 497 |
+
|
| 498 |
+
if is_train and cfg['MODEL']['INIT_WEIGHTS']:
|
| 499 |
+
model.init_weights(cfg['MODEL']['PRETRAINED'])
|
| 500 |
+
|
| 501 |
+
return model
|