Update app.py
Browse files
app.py
CHANGED
|
@@ -14,17 +14,6 @@ import io
|
|
| 14 |
import librosa
|
| 15 |
import ffmpeg
|
| 16 |
|
| 17 |
-
#from torchaudio.io import CodecConfig
|
| 18 |
-
# import numpy
|
| 19 |
-
|
| 20 |
-
# def my_read_file(audio_path, max_second):
|
| 21 |
-
# signal, sr, audio_length_second = read_as_single_channel_16k(audio_path, default_sr)
|
| 22 |
-
# if audio_length_second > max_second:
|
| 23 |
-
# signal = signal[0:default_sr * max_second]
|
| 24 |
-
# audio_length_second = max_second
|
| 25 |
-
|
| 26 |
-
# return signal, sr, audio_length_second
|
| 27 |
-
|
| 28 |
def create_default_value():
|
| 29 |
if "def_value" not in st.session_state:
|
| 30 |
def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit)
|
|
@@ -98,18 +87,6 @@ def main():
|
|
| 98 |
file_extension_ori =".mp3"
|
| 99 |
file_extension =".wav"
|
| 100 |
|
| 101 |
-
#RuntimeError: Could not infer dtype of numpy.float32
|
| 102 |
-
#wav = torch.tensor(wav3).float() / 32768.0
|
| 103 |
-
|
| 104 |
-
#RuntimeError: Numpy is not available
|
| 105 |
-
# wav = torch.from_numpy(wav3) #/32768.0
|
| 106 |
-
# wav = wav.unsqueeze(0).unsqueeze(0)
|
| 107 |
-
# st.markdown("Before unsqueeze mp3")
|
| 108 |
-
# st.markdown(wav)
|
| 109 |
-
|
| 110 |
-
#Unsqueeze for line 176
|
| 111 |
-
# wav= wav.unsqueeze(0)
|
| 112 |
-
|
| 113 |
action = st.selectbox("Select Action", ["Add Watermark", "Detect Watermark"])
|
| 114 |
|
| 115 |
if action == "Add Watermark":
|
|
@@ -205,179 +182,6 @@ def main():
|
|
| 205 |
|
| 206 |
except RuntimeError:
|
| 207 |
st.error("Please input audio with one channel (mono-channel)")
|
| 208 |
-
|
| 209 |
-
# if audio_file:
|
| 210 |
-
# # 保存文件到本地:
|
| 211 |
-
# # tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
|
| 212 |
-
# # st.markdown(tmp_input_audio_file)
|
| 213 |
-
# # with open(tmp_input_audio_file, "wb") as f:
|
| 214 |
-
# # f.write(audio_file.getbuffer())
|
| 215 |
-
# # st.audio(tmp_input_audio_file, format="mp3/wav")
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
# #1st attempt
|
| 219 |
-
# #audio_path = " audio_file.name"
|
| 220 |
-
|
| 221 |
-
# # audio, sr = torchaudio.load(audio_file)
|
| 222 |
-
# # st.audio(audio_file, format="audio/mpeg")
|
| 223 |
-
# # audio= audio.unsqueeze(0)
|
| 224 |
-
|
| 225 |
-
# # st.markdown("SR")
|
| 226 |
-
# # st.markdown(sr)
|
| 227 |
-
# # st.markdown("after unsqueeze wav or mp3")
|
| 228 |
-
# # st.markdown(audio)
|
| 229 |
-
|
| 230 |
-
# #2nd attempt
|
| 231 |
-
# # Save file to local storage
|
| 232 |
-
# tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
|
| 233 |
-
# file_extension = os.path.splitext(tmp_input_audio_file)[1].lower()
|
| 234 |
-
# #st.markdown(file_extension)
|
| 235 |
-
# if file_extension in [".wav", ".flac"]:
|
| 236 |
-
# with open("test.wav", "wb") as f:
|
| 237 |
-
# f.write(audio_file.getbuffer())
|
| 238 |
-
|
| 239 |
-
# st.audio("test.wav", format="audio/wav")
|
| 240 |
-
|
| 241 |
-
# elif file_extension == ".mp3":
|
| 242 |
-
# with open("test.mp3", "wb") as f:
|
| 243 |
-
# f.write(audio_file.getbuffer())
|
| 244 |
-
|
| 245 |
-
# st.audio("test.mp3", format="audio/mpeg")
|
| 246 |
-
|
| 247 |
-
# #Load the WAV file using torchaudio
|
| 248 |
-
# if file_extension in [".wav", ".flac"]:
|
| 249 |
-
# wav, sample_rate = torchaudio.load("test.wav")
|
| 250 |
-
# # st.markdown("Before unsquueze wav")
|
| 251 |
-
# # st.markdown(wav)
|
| 252 |
-
# file_extension_ori =".wav"
|
| 253 |
-
# #Unsqueeze for line 176
|
| 254 |
-
# wav= wav.unsqueeze(0)
|
| 255 |
-
|
| 256 |
-
# elif file_extension == ".mp3":
|
| 257 |
-
# # Load an MP3 file
|
| 258 |
-
# audio = AudioSegment.from_mp3("test.mp3")
|
| 259 |
-
|
| 260 |
-
# # Export it as a WAV file
|
| 261 |
-
# audio.export("test.wav", format="wav")
|
| 262 |
-
# wav3, sample_rate = torchaudio.load("test.wav")
|
| 263 |
-
# wav= wav3.unsqueeze(0)
|
| 264 |
-
# file_extension_ori =".mp3"
|
| 265 |
-
# file_extension =".wav"
|
| 266 |
-
|
| 267 |
-
# #RuntimeError: Could not infer dtype of numpy.float32
|
| 268 |
-
# #wav = torch.tensor(wav3).float() / 32768.0
|
| 269 |
-
|
| 270 |
-
# #RuntimeError: Numpy is not available
|
| 271 |
-
# # wav = torch.from_numpy(wav3) #/32768.0
|
| 272 |
-
# # wav = wav.unsqueeze(0).unsqueeze(0)
|
| 273 |
-
# # st.markdown("Before unsqueeze mp3")
|
| 274 |
-
# # st.markdown(wav)
|
| 275 |
-
|
| 276 |
-
# #Unsqueeze for line 176
|
| 277 |
-
# # wav= wav.unsqueeze(0)
|
| 278 |
-
|
| 279 |
-
# action = st.selectbox("Select Action", ["Add Watermark", "Detect Watermark"])
|
| 280 |
-
|
| 281 |
-
# if action == "Add Watermark":
|
| 282 |
-
# #watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value)
|
| 283 |
-
# add_watermark_button = st.button("Add Watermark", key="add_watermark_btn")
|
| 284 |
-
# if add_watermark_button: # 点击按钮后执行的
|
| 285 |
-
# #if audio_file and watermark_text:
|
| 286 |
-
# if audio_file:
|
| 287 |
-
# with st.spinner("Adding Watermark..."):
|
| 288 |
-
# #wav = my_read_file(wav,max_second_encode)
|
| 289 |
-
|
| 290 |
-
# #1st attempt
|
| 291 |
-
# watermark = model.get_watermark(wav, default_sr)
|
| 292 |
-
# watermarked_audio = wav + watermark
|
| 293 |
-
# print(watermarked_audio.size())
|
| 294 |
-
# size = watermarked_audio.size()
|
| 295 |
-
# #st.markdown(size)
|
| 296 |
-
|
| 297 |
-
# print(watermarked_audio.squeeze())
|
| 298 |
-
# squeeze = watermarked_audio.squeeze(1)
|
| 299 |
-
# shape = squeeze.size()
|
| 300 |
-
# #st.markdown(shape)
|
| 301 |
-
|
| 302 |
-
# #st.markdown(squeeze)
|
| 303 |
-
# if file_extension_ori in [".wav", ".flac"]:
|
| 304 |
-
# torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)
|
| 305 |
-
# watermarked_wav = torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)
|
| 306 |
-
|
| 307 |
-
# st.audio("output.wav", format="audio/wav")
|
| 308 |
-
|
| 309 |
-
# with open("output.wav", "rb") as file:
|
| 310 |
-
# #file.read()
|
| 311 |
-
# #file.write(watermarked_wav.getbuffer())
|
| 312 |
-
# binary_data = file.read()
|
| 313 |
-
# btn = st.download_button(
|
| 314 |
-
# label="Download watermarked audio",
|
| 315 |
-
# data=binary_data,
|
| 316 |
-
# file_name="output.wav",
|
| 317 |
-
# mime="audio/wav",
|
| 318 |
-
# )
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
# elif file_extension_ori == ".mp3":
|
| 322 |
-
# torchaudio.save("output.wav", squeeze, default_sr)
|
| 323 |
-
# watermarked_mp3 = torchaudio.save("output.wav", squeeze, default_sr)
|
| 324 |
-
# audio = AudioSegment.from_wav("output.wav")
|
| 325 |
-
|
| 326 |
-
# # Export as MP3
|
| 327 |
-
# audio.export("output.mp3", format="mp3")
|
| 328 |
-
# st.audio("output.mp3", format="audio/mpeg")
|
| 329 |
-
|
| 330 |
-
# with open("output.mp3", "rb") as file:
|
| 331 |
-
# #file.write(watermarked_wav.getbuffer())
|
| 332 |
-
# binary_data = file.read()
|
| 333 |
-
# st.download_button(
|
| 334 |
-
# label="Download watermarked audio",
|
| 335 |
-
# data=binary_data,
|
| 336 |
-
# file_name="output.mp3",
|
| 337 |
-
# mime="audio/mpeg",
|
| 338 |
-
# )
|
| 339 |
-
# # except RuntimeError:
|
| 340 |
-
# # st.error("Please input audio with one channel (mono-channel)")
|
| 341 |
-
|
| 342 |
-
# elif action == "Detect Watermark":
|
| 343 |
-
# detect_watermark_button = st.button("Detect Watermark", key="detect_watermark_btn")
|
| 344 |
-
|
| 345 |
-
# # if audio_file:
|
| 346 |
-
# # #1st attempt
|
| 347 |
-
# # watermark = model.get_watermark(wav, default_sr)
|
| 348 |
-
# # watermarked_audio = wav + watermark
|
| 349 |
-
# # print(watermarked_audio.size())
|
| 350 |
-
# # size = watermarked_audio.size()
|
| 351 |
-
# # #st.markdown(size)
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
# if detect_watermark_button:
|
| 355 |
-
# with st.spinner("Detecting..."):
|
| 356 |
-
# # result, message = detector.detect_watermark(watermarked_audio, sample_rate=default_sr, message_threshold=0.5)
|
| 357 |
-
# # st.markdown("Probability of audio being watermarked: ")
|
| 358 |
-
# # st.markdown(result)
|
| 359 |
-
# # st.markdown("This is likely a watermarked audio!")
|
| 360 |
-
# # print(f"\nThis is likely a watermarked audio: {result}")
|
| 361 |
-
|
| 362 |
-
# #Run on an unwatermarked audio
|
| 363 |
-
|
| 364 |
-
# if file_extension in [".wav", ".flac"]:
|
| 365 |
-
# wav, sample_rate = torchaudio.load("test.wav")
|
| 366 |
-
# wav= wav.unsqueeze(0)
|
| 367 |
-
|
| 368 |
-
# elif file_extension == ".mp3":
|
| 369 |
-
# # Load an MP3 file
|
| 370 |
-
# audio = AudioSegment.from_mp3("test.mp3")
|
| 371 |
-
# # Export it as a WAV file
|
| 372 |
-
# audio.export("test.wav", format="wav")
|
| 373 |
-
# wav, sample_rate = torchaudio.load("test.wav")
|
| 374 |
-
# wav= wav.unsqueeze(0)
|
| 375 |
-
|
| 376 |
-
# result2, message2 = detector.detect_watermark(wav, sample_rate=default_sr, message_threshold=0.5)
|
| 377 |
-
# print(f"This is likely an unwatermarked audio: {result2}")
|
| 378 |
-
# st.markdown("Probability of audio being watermarked: ")
|
| 379 |
-
# st.markdown(result2)
|
| 380 |
-
# st.markdown("This is likely an unwatermarked audio!")
|
| 381 |
|
| 382 |
|
| 383 |
if __name__ == "__main__":
|
|
@@ -389,9 +193,4 @@ if __name__ == "__main__":
|
|
| 389 |
# model = wavmark.load_model().to(device)
|
| 390 |
model = AudioSeal.load_generator("audioseal_wm_16bits")
|
| 391 |
detector = AudioSeal.load_detector(("audioseal_detector_16bits"))
|
| 392 |
-
main()
|
| 393 |
-
|
| 394 |
-
# audio_path = "/Users/my/Library/Mobile Documents/com~apple~CloudDocs/CODE/PycharmProjects/4_语音水印/419_huggingface水印/WavMark/example.wav"
|
| 395 |
-
|
| 396 |
-
# decoded_watermark, decode_cost = decode_watermark(audio_path)
|
| 397 |
-
# print(decoded_watermark)
|
|
|
|
| 14 |
import librosa
|
| 15 |
import ffmpeg
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
def create_default_value():
|
| 18 |
if "def_value" not in st.session_state:
|
| 19 |
def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit)
|
|
|
|
| 87 |
file_extension_ori =".mp3"
|
| 88 |
file_extension =".wav"
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
action = st.selectbox("Select Action", ["Add Watermark", "Detect Watermark"])
|
| 91 |
|
| 92 |
if action == "Add Watermark":
|
|
|
|
| 182 |
|
| 183 |
except RuntimeError:
|
| 184 |
st.error("Please input audio with one channel (mono-channel)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
|
| 187 |
if __name__ == "__main__":
|
|
|
|
| 193 |
# model = wavmark.load_model().to(device)
|
| 194 |
model = AudioSeal.load_generator("audioseal_wm_16bits")
|
| 195 |
detector = AudioSeal.load_detector(("audioseal_detector_16bits"))
|
| 196 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|