Spaces:
Sleeping
Sleeping
File size: 7,413 Bytes
b965a6e 29a0e42 b965a6e 29a0e42 b965a6e 29a0e42 b965a6e 29a0e42 b965a6e 29a0e42 b965a6e 29a0e42 b965a6e b807233 b965a6e b807233 b965a6e b807233 b965a6e b807233 b965a6e ddf1ba7 29a0e42 b965a6e 29a0e42 b965a6e 29a0e42 b965a6e 29a0e42 b965a6e 29a0e42 d84d51c 29a0e42 d84d51c b965a6e 3d8a7dc a1332fa 3d8a7dc 29a0e42 b965a6e 29a0e42 3d8a7dc 29a0e42 3d8a7dc 29a0e42 d84d51c 3d8a7dc 2aa1857 3d8a7dc d84d51c 3d8a7dc d84d51c 29a0e42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Accuracy metric for the Test of Time benchmark by Bahar et al. (2025)."""
import ast
import json
from typing import Literal
import datasets
import evaluate
_CITATION = """\
@InProceedings{huggingface:module,
title = {Test of Time Accuracy},
authors={Auss Abbood},
year={2025}
}
"""
_DESCRIPTION = """\
The Test of Time (ToT) benchmarks expects models format their answers as a JSON with an explanation field and an answer field that follows a predefined format. The metrics extracts JSONs objects from the model's output, retains only the first JSON, drops the explanation field and compares it with the reference answer.
"""
_KWARGS_DESCRIPTION = """
Compares the extracted answer from the model's output with the reference answer.
Args:
predictions: list of predictions to score. Each prediction should be a string that contains a JSON object (e.g., generated by an LLM).
references: list of reference answers.
subset: The subset of the benchmark being evaluated. Must be one of "arithmetic" or "semantic".
return_average: If True, returns the average accuracy. If False, returns a list of boolean scores (correct/incorrect) for each sample. Defaults to True.
Returns:
accuracy: The accuracy score (0.0 to 1.0) if return_average=True, or a list of booleans indicating correctness per sample if return_average=False.
Examples:
>>> import evaluate
>>> metric = evaluate.load("aauss/test_of_time_accuracy")
>>> predictions = [
... '{"explanation": "Some explanation...", "unordered_list": ["London"]}',
... ' "Response without opening curly brackets...", "answer": "2005-04-07"}',
... ]
>>> references = [
... '{"unordered_list": ["London"]}',
... "{'answer': '2005-04-07'}",
... ]
>>> results = metric.compute(predictions=predictions, references=references, subset="arithmetic")
>>> print(results)
{'accuracy': 0.5}
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class TestOfTimeAccuracy(evaluate.Metric):
"""Accuracy metric for the Test of Time benchmark by Bahar et al. (2025)."""
__test__ = False
def _info(self):
return evaluate.MetricInfo(
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features(
{
"predictions": datasets.Value("string"),
"references": datasets.Value("string"),
}
),
# Homepage of the module for documentation
# homepage="http://module.homepage",
# Additional links to the codebase or references
# codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
# reference_urls=["http://path.to.reference.url/new_module"],
)
@staticmethod
def _extract_first_json_object(s: str) -> dict | None:
decoder = json.JSONDecoder()
idx, end = 0, len(s)
while idx < end:
try:
obj, next_idx = decoder.raw_decode(s, idx)
idx = next_idx
if isinstance(obj, dict):
return obj
except ValueError:
idx += 1
return None
@staticmethod
def _pop_explanation(d):
if isinstance(d, dict):
d.pop("explanation", None)
return d
@staticmethod
def _get_answer(d):
if isinstance(d, dict):
return d.get("answer", None)
return d
@staticmethod
def _parse_label(s):
"""Parses a string that could be a Python dict."""
try:
# Safe: only parses literals, does not execute code
return ast.literal_eval(s)
except (ValueError, SyntaxError):
return None
@staticmethod
def _sort_unordered_list(d):
if isinstance(d, dict) and "unordered_list" in d:
return sorted(d["unordered_list"])
return d
@staticmethod
def _cast_prediction(reference: dict, prediction: dict) -> None | dict:
"""
Casts the values in the prediction dictionary to match the types
of the values in the reference dictionary.
"""
casted_prediction = {}
try:
for ref_key, ref_value in reference.items():
if ref_key not in prediction:
return None
reference_type = type(ref_value)
pred_value = prediction[ref_key]
# Special safeguard: Python allows list("abc") -> ['a', 'b', 'c'].
# We don't want to turn strings into character lists.
if reference_type == list and not isinstance(pred_value, list):
return None
# This handles int("123") -> 123, float(12) -> 12.0, str(100) -> "100"
casted_prediction[ref_key] = reference_type(pred_value)
return casted_prediction
except (ValueError, TypeError):
return None
def _compute(
self,
predictions,
references,
subset: Literal["arithmetic", "semantic"],
return_average: bool = True,
):
"""Returns the scores"""
predictions = [self._extract_first_json_object(p) for p in predictions]
if subset == "semantic":
# Semantic subset's answers are not JSON objects.
# Expected answers are always in "answer" field.
predictions = [self._get_answer(p) for p in predictions]
elif subset == "arithmetic":
# Arithmetic subset's answers are JSON objects.
# Answer fields vary. Thus, remove explanation field.
predictions = [self._pop_explanation(p) for p in predictions]
references = [self._parse_label(r) for r in references]
else:
raise ValueError(f"Invalid subset: {subset}")
accuracy = []
for pred, ref in zip(predictions, references):
if subset == "arithmetic":
pred = self._cast_prediction(ref, pred)
if "unordered_list" in ref:
pred = self._sort_unordered_list(pred)
ref = self._sort_unordered_list(ref)
if subset == "semantic":
pred = str(pred)
ref = str(ref)
accuracy.append(
pred == ref
) # Semantic subset answer JSON somestimes has int as value. Label is string.
if return_average:
return {"accuracy": sum(accuracy) / len(accuracy)}
return {"accuracy": accuracy}
|