MelodyFlowtry2production / demos /melodyflow_api.py
Khushi Dahiya
adding audio componenet
3cfeaa8
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
"""
Optimized MelodyFlow API for concurrent request handling on T4 GPU
This version focuses on high-throughput API serving with batching
"""
import os
import sys
# Fix OpenMP threading issues - ensure they're set early and correctly
os.environ['OMP_NUM_THREADS'] = '1'
os.environ['MKL_NUM_THREADS'] = '1'
os.environ['NUMEXPR_NUM_THREADS'] = '1'
os.environ['OPENBLAS_NUM_THREADS'] = '1'
# Additional protection against environment variable corruption
def ensure_thread_env():
"""Ensure threading environment variables stay set"""
for key, value in [('OMP_NUM_THREADS', '1'), ('MKL_NUM_THREADS', '1'),
('NUMEXPR_NUM_THREADS', '1'), ('OPENBLAS_NUM_THREADS', '1')]:
if os.environ.get(key) != value:
os.environ[key] = value
print(f"Reset {key} to {value}")
# Call it immediately
ensure_thread_env()
import spaces
import asyncio
import threading
import time
import uuid
import base64
import logging
from concurrent.futures import ThreadPoolExecutor, Future
from queue import Queue, Empty
from tempfile import NamedTemporaryFile
from pathlib import Path
import typing as tp
from dataclasses import dataclass
import torch
import gradio as gr
from audiocraft.data.audio_utils import convert_audio
from audiocraft.data.audio import audio_read, audio_write
from audiocraft.models import MelodyFlow
# Fix CSV field size limit for large audio data
import csv
csv.field_size_limit(1000000) # Increase field size limit
# Configuration
MODEL_PREFIX = "facebook/"
BATCH_SIZE = 4 # Optimal for T4 GPU memory
BATCH_TIMEOUT = 1.5 # Seconds to wait for batch formation
MAX_QUEUE_SIZE = 100
MAX_CONCURRENT_BATCHES = 2 # Number of concurrent batch processors
class FileCleaner:
"""Simple file cleaner for temporary audio files"""
def __init__(self, file_lifetime: float = 3600):
self.file_lifetime = file_lifetime
self.files = []
def add(self, path: tp.Union[str, Path]):
self._cleanup()
self.files.append((time.time(), Path(path)))
def _cleanup(self):
now = time.time()
for time_added, path in list(self.files):
if now - time_added > self.file_lifetime:
if path.exists():
path.unlink()
self.files.pop(0)
else:
break
# Global file cleaner
file_cleaner = FileCleaner()
@dataclass
class GenerationRequest:
"""Represents a single generation request"""
request_id: str
text: str
melody: tp.Optional[str]
solver: str
steps: int
target_flowstep: float
regularize: bool
regularization_strength: float
duration: float
model: str
future: Future
created_at: float
class OptimizedBatchProcessor:
"""Highly optimized batch processor for T4 GPU"""
def __init__(self):
self.model = None
self.model_lock = threading.Lock()
self.request_queue = Queue(maxsize=MAX_QUEUE_SIZE)
self.current_batch = []
self.batch_start_time = None
self.processing = False
self.stop_event = threading.Event()
self.executor = ThreadPoolExecutor(max_workers=MAX_CONCURRENT_BATCHES)
def start(self):
"""Start the batch processing service"""
self.thread = threading.Thread(target=self._batch_loop, daemon=True)
self.thread.start()
logging.info("Batch processor started")
def stop(self):
"""Stop the batch processing service"""
self.stop_event.set()
self.executor.shutdown(wait=True)
def submit_request(self, text: str, melody: tp.Optional[str],
solver: str, steps: int, target_flowstep: float,
regularize: bool, regularization_strength: float,
duration: float, model: str) -> Future:
"""Submit a generation request and return a future"""
request = GenerationRequest(
request_id=str(uuid.uuid4()),
text=text,
melody=melody,
solver=solver,
steps=steps,
target_flowstep=target_flowstep,
regularize=regularize,
regularization_strength=regularization_strength,
duration=duration,
model=model,
future=Future(),
created_at=time.time()
)
print(f"📝 Submitting request {request.request_id} with text: '{text[:30]}...'")
try:
self.request_queue.put_nowait(request)
print(f"✅ Request {request.request_id} queued successfully")
return request.future
except:
# Queue is full
print(f"❌ Queue full for request {request.request_id}")
request.future.set_exception(Exception("Server is busy, please try again"))
return request.future
def _batch_loop(self):
"""Main batch processing loop"""
while not self.stop_event.is_set():
try:
# Try to get a request
try:
request = self.request_queue.get(timeout=0.1)
self.current_batch.append(request)
if self.batch_start_time is None:
self.batch_start_time = time.time()
except Empty:
# No new requests, check if we should process current batch
if self._should_process_batch():
self._submit_batch()
continue
# Check if we should process the batch
if self._should_process_batch():
self._submit_batch()
except Exception as e:
logging.error(f"Error in batch loop: {e}")
def _should_process_batch(self) -> bool:
"""Determine if current batch should be processed"""
if not self.current_batch:
return False
batch_age = time.time() - (self.batch_start_time or time.time())
return (len(self.current_batch) >= BATCH_SIZE or
batch_age >= BATCH_TIMEOUT)
def _submit_batch(self):
"""Submit current batch for processing"""
if not self.current_batch:
return
batch = self.current_batch.copy()
self.current_batch = []
self.batch_start_time = None
# Submit to thread pool
self.executor.submit(self._process_batch, batch)
@spaces.GPU(duration=60) # Longer duration for batch processing
def _process_batch(self, batch: tp.List[GenerationRequest]):
"""Process a batch of requests on GPU"""
try:
# Ensure environment variables are still set before processing
ensure_thread_env()
logging.info(f"Processing batch of {len(batch)} requests")
start_time = time.time()
# Load model (assume all requests use same model for simplicity)
model_version = batch[0].model
self._load_model(model_version)
# Separate generation vs editing requests
gen_requests = [req for req in batch if req.melody is None]
edit_requests = [req for req in batch if req.melody is not None]
results = {}
# Process generation requests in batch
if gen_requests:
gen_results = self._process_generation_batch(gen_requests)
results.update(gen_results)
# Process editing requests individually (due to melody constraints)
if edit_requests:
edit_results = self._process_editing_batch(edit_requests)
results.update(edit_results)
# Set results for all requests
for request in batch:
if request.request_id in results:
result_data = results[request.request_id]
print(f"🔄 Setting result for request {request.request_id}: {type(result_data)}")
request.future.set_result(result_data)
else:
print(f"❌ No result found for request {request.request_id}")
request.future.set_exception(Exception("Processing failed"))
processing_time = time.time() - start_time
logging.info(f"Batch processed in {processing_time:.2f}s")
except Exception as e:
logging.error(f"Batch processing error: {e}")
for request in batch:
request.future.set_exception(e)
def _load_model(self, version: str):
"""Thread-safe model loading"""
# Ensure environment variables are still set
ensure_thread_env()
with self.model_lock:
if self.model is None or self.model.name != version:
if self.model is not None:
del self.model
if torch.cuda.is_available():
torch.cuda.empty_cache()
self.model = MelodyFlow.get_pretrained(version)
logging.info(f"Model {version} loaded")
def _process_generation_batch(self, requests: tp.List[GenerationRequest]) -> dict:
"""Process generation requests in batch"""
if not requests:
return {}
# Use parameters from first request (assuming similar params for batch)
params = requests[0]
self.model.set_generation_params(
solver=params.solver,
steps=params.steps,
duration=params.duration
)
# Extract texts
texts = [req.text for req in requests]
# Generate
outputs = self.model.generate(texts, progress=False, return_tokens=False)
outputs = outputs.detach().cpu().float()
# Create results
results = {}
for i, request in enumerate(requests):
audio_base64 = self._audio_to_base64(outputs[i])
results[request.request_id] = {
"audio": audio_base64,
"format": "wav"
}
return results
def _process_editing_batch(self, requests: tp.List[GenerationRequest]) -> dict:
"""Process editing requests individually"""
results = {}
for request in requests:
try:
self.model.set_editing_params(
solver=request.solver,
steps=request.steps,
target_flowstep=request.target_flowstep,
regularize=request.regularize,
lambda_kl=request.regularization_strength
)
# Process melody
melody, sr = audio_read(request.melody)
if melody.dim() == 2:
melody = melody[None]
if melody.shape[-1] > int(sr * self.model.duration):
melody = melody[..., :int(sr * self.model.duration)]
melody = convert_audio(melody, sr, 48000, 2)
melody = self.model.encode_audio(melody.to(self.model.device))
# Edit
output = self.model.edit(
prompt_tokens=melody,
descriptions=[request.text],
src_descriptions=[""],
progress=False,
return_tokens=False
)
output = output.detach().cpu().float()[0]
audio_base64 = self._audio_to_base64(output)
results[request.request_id] = {
"audio": audio_base64,
"format": "wav"
}
except Exception as e:
logging.error(f"Error processing edit request {request.request_id}: {e}")
# Will be handled by batch processor
return results
def _audio_to_base64(self, audio_tensor: torch.Tensor) -> str:
"""Convert audio tensor to base64 string"""
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
audio_write(
file.name, audio_tensor, self.model.sample_rate,
strategy="loudness", loudness_headroom_db=16,
loudness_compressor=True, add_suffix=False
)
with open(file.name, 'rb') as f:
audio_bytes = f.read()
# Clean up temp file
Path(file.name).unlink()
return base64.b64encode(audio_bytes).decode('utf-8')
# Global batch processor
batch_processor = OptimizedBatchProcessor()
def predict_concurrent(model: str, text: str, solver: str = "euler",
steps: int = 50, target_flowstep: float = 0.0,
regularize: bool = False, regularization_strength: float = 0.0,
duration: float = 10.0, melody: tp.Optional[str] = None) -> dict:
"""
Non-blocking predict function optimized for concurrent requests
"""
# Adjust steps for melody editing
if melody is not None:
steps = steps // 2 if solver == "midpoint" else steps // 5
# Submit request to batch processor
future = batch_processor.submit_request(
text=text,
melody=melody,
solver=solver,
steps=steps,
target_flowstep=target_flowstep,
regularize=regularize,
regularization_strength=regularization_strength,
duration=duration,
model=model
)
# Wait for result with timeout
try:
result = future.result(timeout=120) # 2 minute timeout
# Add some debugging
if isinstance(result, dict):
print(f"✅ Received result with keys: {list(result.keys())}")
if "audio" in result:
audio_len = len(result["audio"]) if result["audio"] else 0
print(f"🎵 Audio data length: {audio_len} characters")
# Return a summary instead of the full base64 for testing
# This will help determine if the issue is with large data
return {
"status": "success",
"message": f"Audio generated successfully ({audio_len} bytes)",
"format": result.get("format", "wav"),
"duration": duration,
"text_prompt": text[:50] + "..." if len(text) > 50 else text,
# Uncomment the line below to return full audio data:
# "audio": result["audio"],
"audio_preview": result["audio"][:100] + "..." if result["audio"] else "No audio data"
}
else:
print("⚠️ No audio key in result")
return {"status": "error", "message": "No audio generated"}
else:
print(f"⚠️ Unexpected result type: {type(result)}")
return {"status": "error", "message": f"Unexpected result type: {type(result)}"}
except TimeoutError:
print("⏰ Request timeout")
raise gr.Error("Request timeout - server is overloaded")
except Exception as e:
print(f"💥 Exception: {str(e)}")
raise gr.Error(f"Generation failed: {str(e)}")
def predict_concurrent_ui(model: str, text: str, solver: str = "euler",
steps: int = 50, target_flowstep: float = 0.0,
regularize: bool = False, regularization_strength: float = 0.0,
duration: float = 10.0, melody: tp.Optional[str] = None) -> str:
"""
UI-optimized predict function that returns audio file path for Gradio Audio component
"""
# Adjust steps for melody editing
if melody is not None:
steps = steps // 2 if solver == "midpoint" else steps // 5
# Submit request to batch processor
future = batch_processor.submit_request(
text=text,
melody=melody,
solver=solver,
steps=steps,
target_flowstep=target_flowstep,
regularize=regularize,
regularization_strength=regularization_strength,
duration=duration,
model=model
)
# Wait for result with timeout
try:
result = future.result(timeout=120) # 2 minute timeout
# Convert base64 result to audio file for UI
if isinstance(result, dict) and "audio" in result:
print(f"✅ Received audio result, converting to file...")
# Decode base64 and save to temporary file
import base64
from tempfile import NamedTemporaryFile
audio_data = base64.b64decode(result["audio"])
with NamedTemporaryFile(mode="wb", suffix=".wav", delete=False) as temp_file:
temp_file.write(audio_data)
temp_file_path = temp_file.name
file_cleaner.add(temp_file_path) # Add to cleanup queue
print(f"🎵 Audio saved to: {temp_file_path}")
return temp_file_path
else:
raise gr.Error("No audio data received")
except TimeoutError:
print("⏰ Request timeout")
raise gr.Error("Request timeout - server is overloaded")
except Exception as e:
print(f"💥 Exception: {str(e)}")
raise gr.Error(f"Generation failed: {str(e)}")
def predict_concurrent(model: str, text: str, solver: str = "euler",
steps: int = 50, target_flowstep: float = 0.0,
regularize: bool = False, regularization_strength: float = 0.0,
duration: float = 10.0, melody: tp.Optional[str] = None) -> dict:
"""
API predict function that returns base64 audio data (for API endpoints)
"""
# Adjust steps for melody editing
if melody is not None:
steps = steps // 2 if solver == "midpoint" else steps // 5
# Submit request to batch processor
future = batch_processor.submit_request(
text=text,
melody=melody,
solver=solver,
steps=steps,
target_flowstep=target_flowstep,
regularize=regularize,
regularization_strength=regularization_strength,
duration=duration,
model=model
)
# Wait for result with timeout
try:
result = future.result(timeout=120) # 2 minute timeout
return result
except TimeoutError:
raise gr.Error("Request timeout - server is overloaded")
except Exception as e:
raise gr.Error(f"Generation failed: {str(e)}")
def create_optimized_interface():
"""Create Gradio interface optimized for concurrent usage"""
with gr.Blocks(title="MelodyFlow - Concurrent API") as interface:
gr.Markdown("""
# MelodyFlow - Optimized for Concurrent Requests
This version is optimized for handling multiple concurrent requests efficiently.
Requests are automatically batched for optimal GPU utilization.
""")
with gr.Row():
with gr.Column():
text = gr.Text(label="Text Description", placeholder="Describe the music you want to generate...")
melody = gr.Audio(label="Reference Audio (optional)", type="filepath")
with gr.Row():
solver = gr.Radio(["euler", "midpoint"], label="Solver", value="euler")
steps = gr.Slider(1, 128, value=50, label="Steps")
with gr.Row():
duration = gr.Slider(1, 30, value=10, label="Duration (s)")
model = gr.Dropdown(
[f"{MODEL_PREFIX}melodyflow-t24-30secs"],
value=f"{MODEL_PREFIX}melodyflow-t24-30secs",
label="Model"
)
generate_btn = gr.Button("Generate", variant="primary")
with gr.Column():
output = gr.Audio(label="Generated Audio")
generate_btn.click(
fn=predict_concurrent_ui,
inputs=[model, text, solver, steps, gr.State(0.0),
gr.State(False), gr.State(0.0), duration, melody],
outputs=output,
concurrency_limit=20 # Set concurrency limit on the event listener
)
gr.Examples(
fn=predict_concurrent_ui,
examples=[
[f"{MODEL_PREFIX}melodyflow-t24-30secs",
"80s electronic track with melodic synthesizers",
"euler", 50, 0.0, False, 0.0, 10.0, None],
[f"{MODEL_PREFIX}melodyflow-t24-30secs",
"Cheerful country song with acoustic guitars",
"euler", 50, 0.0, False, 0.0, 15.0, None]
],
inputs=[model, text, solver, steps, gr.State(0.0),
gr.State(False), gr.State(0.0), duration, melody],
outputs=output,
cache_examples=False # Disable caching to avoid CSV field size errors
)
return interface
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--host", default="0.0.0.0", help="Host to bind to")
parser.add_argument("--port", type=int, default=7860, help="Port to bind to")
parser.add_argument("--share", action="store_true", help="Create public link")
args = parser.parse_args()
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
# Ensure environment variables one more time before starting
ensure_thread_env()
# Start batch processor
batch_processor.start()
# Create and launch interface
interface = create_optimized_interface()
try:
interface.queue(
max_size=200, # Large queue
api_open=True
).launch(
server_name=args.host,
server_port=args.port,
share=args.share,
show_api=True,
max_threads=40 # Configure worker threads in launch()
)
finally:
batch_processor.stop()