Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
# 1. Konfiguracja modelu i tokenizera
|
| 6 |
+
MODEL_ID = "tiiuae/Falcon-H1-1.5B-Deep-Instruct"
|
| 7 |
+
|
| 8 |
+
# 艁adowanie tokenizera
|
| 9 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 10 |
+
|
| 11 |
+
# 艁adowanie modelu z optymalizacj膮 autodevice i bfloat16 (je艣li wspierane)
|
| 12 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 13 |
+
MODEL_ID,
|
| 14 |
+
torch_dtype=torch.bfloat16, # lub torch.float16 / torch.float32, zale偶nie od dost臋pnego sprz臋tu
|
| 15 |
+
device_map="auto", # automatyczne roz艂o偶enie na GPU/CPU
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
# 2. Funkcja generuj膮ca odpowied藕
|
| 19 |
+
def generate_text(prompt: str, max_length: int = 256, temperature: float = 0.7, top_p: float = 0.9):
|
| 20 |
+
# Tokenizacja wej艣cia
|
| 21 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 22 |
+
# Generacja sekwencji
|
| 23 |
+
outputs = model.generate(
|
| 24 |
+
**inputs,
|
| 25 |
+
max_new_tokens=max_length,
|
| 26 |
+
temperature=temperature,
|
| 27 |
+
top_p=top_p,
|
| 28 |
+
do_sample=True,
|
| 29 |
+
pad_token_id=tokenizer.eos_token_id
|
| 30 |
+
)
|
| 31 |
+
# Dekodowanie na tekst
|
| 32 |
+
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 33 |
+
# Usu艅 powt贸rzone zapytanie
|
| 34 |
+
return generated[len(prompt):].strip()
|
| 35 |
+
|
| 36 |
+
# 3. Interfejs Gradio
|
| 37 |
+
with gr.Blocks(title="Falcon-H1-1.5B Deep Instruct") as demo:
|
| 38 |
+
gr.Markdown("## Falcon-H1-1.5B-Deep-Instruct\nInteraktywny interfejs do generowania tekstu za pomoc膮 modelu Instrukcyjnego")
|
| 39 |
+
with gr.Row():
|
| 40 |
+
with gr.Column(scale=3):
|
| 41 |
+
prompt_input = gr.Textbox(label="Wpisz prompt", lines=6, placeholder="Napisz co艣...")
|
| 42 |
+
max_len_slider = gr.Slider(minimum=16, maximum=1024, value=256, step=16, label="Maksymalna d艂ugo艣膰 odpowiedzi")
|
| 43 |
+
temp_slider = gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.05, label="Temperature")
|
| 44 |
+
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (nucleus sampling)")
|
| 45 |
+
submit_btn = gr.Button("Generuj")
|
| 46 |
+
with gr.Column(scale=5):
|
| 47 |
+
output_box = gr.Textbox(label="Wygenerowany tekst", lines=10)
|
| 48 |
+
|
| 49 |
+
# Powi膮zanie przycisku z funkcj膮
|
| 50 |
+
submit_btn.click(
|
| 51 |
+
fn=generate_text,
|
| 52 |
+
inputs=[prompt_input, max_len_slider, temp_slider, top_p_slider],
|
| 53 |
+
outputs=output_box
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
# 4. Uruchomienie serwera
|
| 57 |
+
if __name__ == "__main__":
|
| 58 |
+
demo.launch(share=False, server_name="0.0.0.0", server_port=7860)
|
| 59 |
+
|