Spaces:
Running
Running
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,311 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import requests
|
| 4 |
-
from langchain_community.document_loaders import TextLoader, DirectoryLoader
|
| 5 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
-
from langchain_community.vectorstores import FAISS
|
| 7 |
-
from langchain_openai import ChatOpenAI
|
| 8 |
-
from langchain.prompts import PromptTemplate
|
| 9 |
-
import numpy as np
|
| 10 |
-
import faiss
|
| 11 |
-
from collections import deque
|
| 12 |
-
from langchain_core.embeddings import Embeddings
|
| 13 |
-
import threading
|
| 14 |
-
import queue
|
| 15 |
-
from langchain_core.messages import HumanMessage, AIMessage
|
| 16 |
-
from sentence_transformers import SentenceTransformer
|
| 17 |
-
import pickle
|
| 18 |
-
import torch
|
| 19 |
-
import time
|
| 20 |
-
from tqdm import tqdm
|
| 21 |
-
import logging
|
| 22 |
-
|
| 23 |
-
# 设置日志
|
| 24 |
-
logging.basicConfig(level=logging.INFO)
|
| 25 |
-
logger = logging.getLogger(__name__)
|
| 26 |
-
|
| 27 |
-
# 获取环境变量
|
| 28 |
-
os.environ["OPENROUTER_API_KEY"] = os.getenv("OPENROUTER_API_KEY", "")
|
| 29 |
-
if not os.environ["OPENROUTER_API_KEY"]:
|
| 30 |
-
raise ValueError("OPENROUTER_API_KEY 未设置")
|
| 31 |
-
SILICONFLOW_API_KEY = os.getenv("SILICONFLOW_API_KEY")
|
| 32 |
-
if not SILICONFLOW_API_KEY:
|
| 33 |
-
raise ValueError("SILICONFLOW_API_KEY 未设置")
|
| 34 |
-
|
| 35 |
-
# SiliconFlow API 配置
|
| 36 |
-
SILICONFLOW_API_URL = "https://api.siliconflow.cn/v1/rerank"
|
| 37 |
-
|
| 38 |
-
# 自定义嵌入类,优化查询缓存
|
| 39 |
-
class SentenceTransformerEmbeddings(Embeddings):
|
| 40 |
-
def __init__(self, model_name="BAAI/bge-m3"):
|
| 41 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 42 |
-
self.model = SentenceTransformer(model_name, device=device)
|
| 43 |
-
self.batch_size = 32 # 减小批次大小以适应低内存
|
| 44 |
-
self.query_cache = {}
|
| 45 |
-
self.cache_lock = threading.Lock()
|
| 46 |
-
|
| 47 |
-
def embed_documents(self, texts):
|
| 48 |
-
embeddings_list = []
|
| 49 |
-
batch_size = 1000 # 减小批次以降低内存压力
|
| 50 |
-
total_chunks = len(texts)
|
| 51 |
-
logger.info(f"生成嵌入,文档数: {total_chunks}")
|
| 52 |
-
with torch.no_grad():
|
| 53 |
-
for i in tqdm(range(0, total_chunks, batch_size), desc="生成嵌入"):
|
| 54 |
-
batch_texts = [text.page_content for text in texts[i:i + batch_size]]
|
| 55 |
-
batch_emb = self.model.encode(
|
| 56 |
-
batch_texts,
|
| 57 |
-
normalize_embeddings=True,
|
| 58 |
-
batch_size=self.batch_size
|
| 59 |
-
)
|
| 60 |
-
embeddings_list.append(batch_emb)
|
| 61 |
-
embeddings_array = np.vstack(embeddings_list)
|
| 62 |
-
np.save("embeddings.npy", embeddings_array)
|
| 63 |
-
return embeddings_array
|
| 64 |
-
|
| 65 |
-
def embed_query(self, text):
|
| 66 |
-
with self.cache_lock:
|
| 67 |
-
if text in self.query_cache:
|
| 68 |
-
return self.query_cache[text]
|
| 69 |
-
with torch.no_grad():
|
| 70 |
-
emb = self.model.encode([text], normalize_embeddings=True, batch_size=1)[0]
|
| 71 |
-
with self.cache_lock:
|
| 72 |
-
self.query_cache[text] = emb
|
| 73 |
-
if len(self.query_cache) > 1000: # 限制缓存大小
|
| 74 |
-
self.query_cache.pop(next(iter(self.query_cache)))
|
| 75 |
-
return emb
|
| 76 |
-
|
| 77 |
-
# 重排序函数
|
| 78 |
-
def rerank_documents(query, documents, top_n=15):
|
| 79 |
-
try:
|
| 80 |
-
doc_texts = [(doc.page_content[:2048], doc.metadata.get("book", "未知来源")) for doc in documents[:50]]
|
| 81 |
-
headers = {"Authorization": f"Bearer {SILICONFLOW_API_KEY}", "Content-Type": "application/json"}
|
| 82 |
-
payload = {"model": "BAAI/bge-reranker-v2-m3", "query": query, "documents": [text for text, _ in doc_texts], "top_n": top_n}
|
| 83 |
-
response = requests.post(SILICONFLOW_API_URL, headers=headers, json=payload)
|
| 84 |
-
response.raise_for_status()
|
| 85 |
-
result = response.json()
|
| 86 |
-
reranked_docs = []
|
| 87 |
-
for res in result["results"]:
|
| 88 |
-
index = res["index"]
|
| 89 |
-
score = res["relevance_score"]
|
| 90 |
-
if index < len(documents):
|
| 91 |
-
text, book = doc_texts[index]
|
| 92 |
-
reranked_docs.append((documents[index], score))
|
| 93 |
-
return sorted(reranked_docs, key=lambda x: x[1], reverse=True)[:top_n]
|
| 94 |
-
except Exception as e:
|
| 95 |
-
logger.error(f"重排序失败: {str(e)}")
|
| 96 |
-
raise
|
| 97 |
-
|
| 98 |
-
# 构建 HNSW 索引
|
| 99 |
-
def build_hnsw_index(knowledge_base_path, index_path):
|
| 100 |
-
loader = DirectoryLoader(knowledge_base_path, glob="*.txt", loader_cls=lambda path: TextLoader(path, encoding="utf-8"))
|
| 101 |
-
documents = loader.load()
|
| 102 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 103 |
-
texts = text_splitter.split_documents(documents)
|
| 104 |
-
for i, doc in enumerate(texts):
|
| 105 |
-
doc.metadata["book"] = os.path.basename(doc.metadata.get("source", "未知来源")).replace(".txt", "")
|
| 106 |
-
embeddings_array = embeddings.embed_documents(texts)
|
| 107 |
-
dimension = embeddings_array.shape[1]
|
| 108 |
-
index = faiss.IndexHNSWFlat(dimension, 16)
|
| 109 |
-
index.hnsw.efConstruction = 100
|
| 110 |
-
index.add(embeddings_array)
|
| 111 |
-
vector_store = FAISS.from_embeddings([(doc.page_content, embeddings_array[i]) for i, doc in enumerate(texts)], embeddings)
|
| 112 |
-
vector_store.index = index
|
| 113 |
-
vector_store.save_local(index_path)
|
| 114 |
-
with open("chunks.pkl", "wb") as f:
|
| 115 |
-
pickle.dump(texts, f)
|
| 116 |
-
return vector_store, texts
|
| 117 |
-
|
| 118 |
-
# 初始化嵌入模型和索引
|
| 119 |
-
embeddings = SentenceTransformerEmbeddings()
|
| 120 |
-
index_path = "faiss_index_hnsw_new"
|
| 121 |
-
knowledge_base_path = "knowledge_base"
|
| 122 |
-
|
| 123 |
-
if not os.path.exists(index_path):
|
| 124 |
-
vector_store, all_documents = build_hnsw_index(knowledge_base_path, index_path)
|
| 125 |
-
else:
|
| 126 |
-
vector_store = FAISS.load_local(index_path, embeddings=embeddings, allow_dangerous_deserialization=True)
|
| 127 |
-
vector_store.index.hnsw.efSearch = 200 # 降低 efSearch 以提升速度
|
| 128 |
-
with open("chunks.pkl", "rb") as f:
|
| 129 |
-
all_documents = pickle.load(f)
|
| 130 |
-
|
| 131 |
-
# 初始化 LLM
|
| 132 |
-
llm = ChatOpenAI(
|
| 133 |
-
model="deepseek/deepseek-r1:free",
|
| 134 |
-
api_key=os.environ["OPENROUTER_API_KEY"],
|
| 135 |
-
base_url="https://openrouter.ai/api/v1",
|
| 136 |
-
timeout=100,
|
| 137 |
-
temperature=0.3,
|
| 138 |
-
max_tokens=130000,
|
| 139 |
-
streaming=True
|
| 140 |
-
)
|
| 141 |
-
|
| 142 |
-
# 提示词模板
|
| 143 |
-
prompt_template = PromptTemplate(
|
| 144 |
-
input_variables=["context", "question", "chat_history"],
|
| 145 |
-
template="""
|
| 146 |
-
你是一个研究李敖的专家,根据用户提出的问题{question}、最近7轮对话历史{chat_history}以及从李敖相关书籍和评论中检索的至少10篇文本内容{context}回答问题。
|
| 147 |
-
在回答时,请注意以下几点:
|
| 148 |
-
- 结合李敖的写作风格和思想,筛选出与问题和对话历史最相关的检索内容,避免无关信息。
|
| 149 |
-
- 必须在回答中引用至少10篇不同的文本内容,引用格式为[引用: 文本序号],例如[引用: 1][引用: 2],并确保每篇文本在回答中都有明确使用。
|
| 150 |
-
- 在回答的末尾,必须以“引用文献”标题列出所有引用的文本序号及其内容摘要(每篇不超过50字)以及具体的书目信息(例如书名和章节),格式为:
|
| 151 |
-
- 引用文献:
|
| 152 |
-
1. [文本 1] 摘要... 出自:书名,第X页/章节。
|
| 153 |
-
2. [文本 2] 摘要... 出自:书名,第X页/章节。
|
| 154 |
-
(依此类推,至少10篇)
|
| 155 |
-
- 如果问题涉及李敖对某人或某事的评价,优先引用李敖的直接言论或文字,并说明出处。
|
| 156 |
-
- 回答应结构化、分段落,确保逻辑清晰,语言生动,类似李敖的犀利风格。
|
| 157 |
-
- 如果检索内容和历史不足以直接回答问题,可根据李敖的性格和观点推测其可能的看法,但需说明这是推测。
|
| 158 |
-
- 只能基于提供的知识库内容{context}和对话历史{chat_history}回答,不得引入外部信息。
|
| 159 |
-
- 对于列举类问题,控制在10个要点以内,并优先提供最相关项。
|
| 160 |
-
- 如果回答较长,结构化分段总结,分点作答控制在8个点以内。
|
| 161 |
-
- 对于客观类的问答,如果问题的答案非常简短,可以适当补充一到两句相关信息,以丰富内容。
|
| 162 |
-
- 你需要根据用户要求和回答内容选择合适、美观的回答格式,确保可读性强。
|
| 163 |
-
- 你的回答应该综合多个相关知识库内容来回答,不能重复引用一个知识库内容。
|
| 164 |
-
- 除非用户要求,否则你回答的语言需要和用户提问的语言保持一致。
|
| 165 |
-
"""
|
| 166 |
-
)
|
| 167 |
-
|
| 168 |
-
# 对话历史管理
|
| 169 |
-
class ConversationHistory:
|
| 170 |
-
def __init__(self, max_length=5): # 减少历史轮数
|
| 171 |
-
self.history = deque(maxlen=max_length)
|
| 172 |
-
|
| 173 |
-
def add_turn(self, question, answer):
|
| 174 |
-
self.history.append((question, answer))
|
| 175 |
-
|
| 176 |
-
def get_history(self):
|
| 177 |
-
return [(q, a) for q, a in self.history]
|
| 178 |
-
|
| 179 |
-
# 用户会话状态
|
| 180 |
-
class UserSession:
|
| 181 |
-
def __init__(self):
|
| 182 |
-
self.conversation = ConversationHistory()
|
| 183 |
-
self.output_queue = queue.Queue()
|
| 184 |
-
self.stop_flag = threading.Event()
|
| 185 |
-
|
| 186 |
-
# 生成回答
|
| 187 |
-
def generate_answer_thread(question, session):
|
| 188 |
-
stop_flag = session.stop_flag
|
| 189 |
-
output_queue = session.output_queue
|
| 190 |
-
conversation = session.conversation
|
| 191 |
-
|
| 192 |
-
stop_flag.clear()
|
| 193 |
-
try:
|
| 194 |
-
# 打印用户问题到控制台
|
| 195 |
-
logger.info(f"用户问题: {question}")
|
| 196 |
-
|
| 197 |
-
history_list = conversation.get_history()
|
| 198 |
-
history_text = "\n".join([f"问: {q}\n答: {a}" for q, a in history_list[-3:]]) # 只用最后3轮
|
| 199 |
-
query_with_context = f"{history_text}\n问题: {question}" if history_text else question
|
| 200 |
-
|
| 201 |
-
# 异步生成查询嵌入
|
| 202 |
-
embed_queue = queue.Queue()
|
| 203 |
-
def embed_task():
|
| 204 |
-
start = time.time()
|
| 205 |
-
emb = embeddings.embed_query(query_with_context)
|
| 206 |
-
embed_queue.put((emb, time.time() - start))
|
| 207 |
-
embed_thread = threading.Thread(target=embed_task)
|
| 208 |
-
embed_thread.start()
|
| 209 |
-
embed_thread.join()
|
| 210 |
-
query_embedding, embed_time = embed_queue.get()
|
| 211 |
-
|
| 212 |
-
if stop_flag.is_set():
|
| 213 |
-
output_queue.put("生成已停止")
|
| 214 |
-
return
|
| 215 |
-
|
| 216 |
-
# 初始检索
|
| 217 |
-
start = time.time()
|
| 218 |
-
docs_with_scores = vector_store.similarity_search_with_score_by_vector(query_embedding, k=50)
|
| 219 |
-
search_time = time.time() - start
|
| 220 |
-
|
| 221 |
-
if stop_flag.is_set():
|
| 222 |
-
output_queue.put("生成已停止")
|
| 223 |
-
return
|
| 224 |
-
|
| 225 |
-
# 重排序
|
| 226 |
-
initial_docs = [doc for doc, _ in docs_with_scores]
|
| 227 |
-
start = time.time()
|
| 228 |
-
reranked_docs_with_scores = rerank_documents(query_with_context, initial_docs)
|
| 229 |
-
rerank_time = time.time() - start
|
| 230 |
-
final_docs = [doc for doc, _ in reranked_docs_with_scores][:10]
|
| 231 |
-
|
| 232 |
-
# 打印重排序结果到控制台
|
| 233 |
-
logger.info("重排序结果(最终保留的片段及其得分):")
|
| 234 |
-
for i, (doc, score) in enumerate(reranked_docs_with_scores[:10], 1):
|
| 235 |
-
logger.info(f"片段 {i}:")
|
| 236 |
-
logger.info(f" 内容: {doc.page_content[:100]}...")
|
| 237 |
-
logger.info(f" 来源: {doc.metadata.get('book', '未知来源')}")
|
| 238 |
-
logger.info(f" 得分: {score:.4f}")
|
| 239 |
-
|
| 240 |
-
context = "\n".join([f"[文本 {i+1}] {doc.page_content} (出处: {doc.metadata.get('book')})" for i, doc in enumerate(final_docs)])
|
| 241 |
-
prompt = prompt_template.format(context=context, question=question, chat_history=history_text)
|
| 242 |
-
|
| 243 |
-
# 将时间信息加入回答开头
|
| 244 |
-
timing_info = (
|
| 245 |
-
f"处理时间统计:\n"
|
| 246 |
-
f"- 嵌入时间: {embed_time:.2f} 秒\n"
|
| 247 |
-
f"- 检索时间: {search_time:.2f} 秒\n"
|
| 248 |
-
f"- 重排序时间: {rerank_time:.2f} 秒\n\n"
|
| 249 |
-
)
|
| 250 |
-
|
| 251 |
-
answer = timing_info
|
| 252 |
-
output_queue.put(answer) # 先显示时间信息
|
| 253 |
-
|
| 254 |
-
# LLM 生成回答
|
| 255 |
-
start = time.time()
|
| 256 |
-
for chunk in llm.stream([HumanMessage(content=prompt)]):
|
| 257 |
-
if stop_flag.is_set():
|
| 258 |
-
output_queue.put(answer + "\n(生成已停止)")
|
| 259 |
-
return
|
| 260 |
-
answer += chunk.content
|
| 261 |
-
output_queue.put(answer)
|
| 262 |
-
llm_time = time.time() - start
|
| 263 |
-
answer += f"\n\n生成耗时: {llm_time:.2f} 秒"
|
| 264 |
-
output_queue.put(answer)
|
| 265 |
-
|
| 266 |
-
conversation.add_turn(question, answer)
|
| 267 |
-
output_queue.put(answer)
|
| 268 |
-
|
| 269 |
-
except Exception as e:
|
| 270 |
-
output_queue.put(f"Error: {str(e)}")
|
| 271 |
-
|
| 272 |
-
# Gradio 接口
|
| 273 |
-
def answer_question(question, session_state):
|
| 274 |
-
if session_state is None:
|
| 275 |
-
session_state = UserSession()
|
| 276 |
-
|
| 277 |
-
thread = threading.Thread(target=generate_answer_thread, args=(question, session_state))
|
| 278 |
-
thread.start()
|
| 279 |
-
|
| 280 |
-
while thread.is_alive() or not session_state.output_queue.empty():
|
| 281 |
-
try:
|
| 282 |
-
output = session_state.output_queue.get(timeout=0.1)
|
| 283 |
-
yield output, session_state
|
| 284 |
-
except queue.Empty:
|
| 285 |
-
continue
|
| 286 |
-
|
| 287 |
-
def stop_generation(session_state):
|
| 288 |
-
if session_state:
|
| 289 |
-
session_state.stop_flag.set()
|
| 290 |
-
return "生成已停止"
|
| 291 |
-
|
| 292 |
-
def clear_conversation():
|
| 293 |
-
return "对话已清空", UserSession()
|
| 294 |
-
|
| 295 |
-
# Gradio 界面
|
| 296 |
-
with gr.Blocks(title="AI李敖助手") as interface:
|
| 297 |
-
gr.Markdown("### AI李敖助手")
|
| 298 |
-
gr.Markdown("基于李敖163本相关书籍构建的知识库,支持上下文关联,记住最近5轮对话,输入问题以获取李敖风格的回答。")
|
| 299 |
-
session_state = gr.State(value=None)
|
| 300 |
-
question_input = gr.Textbox(label="问题")
|
| 301 |
-
submit_button = gr.Button("提交")
|
| 302 |
-
clear_button = gr.Button("新建对话")
|
| 303 |
-
stop_button = gr.Button("停止生成")
|
| 304 |
-
output_text = gr.Textbox(label="回答", interactive=False)
|
| 305 |
-
|
| 306 |
-
submit_button.click(fn=answer_question, inputs=[question_input, session_state], outputs=[output_text, session_state])
|
| 307 |
-
clear_button.click(fn=clear_conversation, inputs=None, outputs=[output_text, session_state])
|
| 308 |
-
stop_button.click(fn=stop_generation, inputs=[session_state], outputs=output_text)
|
| 309 |
-
|
| 310 |
-
if __name__ == "__main__":
|
| 311 |
-
interface.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|