Add request timing analytics and improve UI organization
Browse files- Reorganized app into separate "App" and "Analytics" tabs
- Added request timing tracking to measure performance
- Display average request time chart alongside request count
- Updated data storage logic for Hugging Face Spaces compatibility
- Added speed-focused messaging highlighting <3 second performance
- Changed timing chart from LinePlot to BarPlot for better visualization
🤖 Generated with [Claude Code](https://claude.ai/code)
Co-Authored-By: Claude <[email protected]>
- analytics.py +63 -4
- app.py +134 -92
analytics.py
CHANGED
|
@@ -5,8 +5,24 @@ from datetime import datetime, timedelta, timezone
|
|
| 5 |
from filelock import FileLock # pip install filelock
|
| 6 |
import pandas as pd # already available in HF images
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
def _load() -> dict:
|
| 12 |
if not os.path.exists(COUNTS_FILE):
|
|
@@ -18,13 +34,32 @@ def _save(data: dict):
|
|
| 18 |
with open(COUNTS_FILE, "w") as f:
|
| 19 |
json.dump(data, f)
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
today = datetime.now(timezone.utc).strftime("%Y-%m-%d")
|
| 24 |
with FileLock(LOCK_FILE):
|
|
|
|
| 25 |
data = _load()
|
| 26 |
data[today] = data.get(today, 0) + 1
|
| 27 |
_save(data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
def last_n_days_df(n: int = 30) -> pd.DataFrame:
|
| 30 |
"""Return a DataFrame with a row for each of the past *n* days."""
|
|
@@ -42,4 +77,28 @@ def last_n_days_df(n: int = 30) -> pd.DataFrame:
|
|
| 42 |
"count": data.get(day_str, 0),
|
| 43 |
"full_date": day_str # Keep full date for tooltip
|
| 44 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
return pd.DataFrame(records)
|
|
|
|
| 5 |
from filelock import FileLock # pip install filelock
|
| 6 |
import pandas as pd # already available in HF images
|
| 7 |
|
| 8 |
+
# Determine data directory based on environment
|
| 9 |
+
# 1. Check for environment variable override
|
| 10 |
+
# 2. Use /data if it exists and is writable (Hugging Face Spaces with persistent storage)
|
| 11 |
+
# 3. Use ./data for local development
|
| 12 |
+
DATA_DIR = os.getenv("ANALYTICS_DATA_DIR")
|
| 13 |
+
if not DATA_DIR:
|
| 14 |
+
if os.path.exists("/data") and os.access("/data", os.W_OK):
|
| 15 |
+
DATA_DIR = "/data"
|
| 16 |
+
print("[Analytics] Using persistent storage at /data")
|
| 17 |
+
else:
|
| 18 |
+
DATA_DIR = "./data"
|
| 19 |
+
print("[Analytics] Using local storage at ./data")
|
| 20 |
+
|
| 21 |
+
os.makedirs(DATA_DIR, exist_ok=True)
|
| 22 |
+
|
| 23 |
+
COUNTS_FILE = os.path.join(DATA_DIR, "request_counts.json")
|
| 24 |
+
TIMES_FILE = os.path.join(DATA_DIR, "request_times.json")
|
| 25 |
+
LOCK_FILE = os.path.join(DATA_DIR, "analytics.lock")
|
| 26 |
|
| 27 |
def _load() -> dict:
|
| 28 |
if not os.path.exists(COUNTS_FILE):
|
|
|
|
| 34 |
with open(COUNTS_FILE, "w") as f:
|
| 35 |
json.dump(data, f)
|
| 36 |
|
| 37 |
+
def _load_times() -> dict:
|
| 38 |
+
if not os.path.exists(TIMES_FILE):
|
| 39 |
+
return {}
|
| 40 |
+
with open(TIMES_FILE) as f:
|
| 41 |
+
return json.load(f)
|
| 42 |
+
|
| 43 |
+
def _save_times(data: dict):
|
| 44 |
+
with open(TIMES_FILE, "w") as f:
|
| 45 |
+
json.dump(data, f)
|
| 46 |
+
|
| 47 |
+
async def record_request(duration: float = None) -> None:
|
| 48 |
+
"""Increment today's counter (UTC) atomically and optionally record request duration."""
|
| 49 |
today = datetime.now(timezone.utc).strftime("%Y-%m-%d")
|
| 50 |
with FileLock(LOCK_FILE):
|
| 51 |
+
# Update counts
|
| 52 |
data = _load()
|
| 53 |
data[today] = data.get(today, 0) + 1
|
| 54 |
_save(data)
|
| 55 |
+
|
| 56 |
+
# Update times if duration provided
|
| 57 |
+
if duration is not None:
|
| 58 |
+
times = _load_times()
|
| 59 |
+
if today not in times:
|
| 60 |
+
times[today] = []
|
| 61 |
+
times[today].append(round(duration, 2))
|
| 62 |
+
_save_times(times)
|
| 63 |
|
| 64 |
def last_n_days_df(n: int = 30) -> pd.DataFrame:
|
| 65 |
"""Return a DataFrame with a row for each of the past *n* days."""
|
|
|
|
| 77 |
"count": data.get(day_str, 0),
|
| 78 |
"full_date": day_str # Keep full date for tooltip
|
| 79 |
})
|
| 80 |
+
return pd.DataFrame(records)
|
| 81 |
+
|
| 82 |
+
def last_n_days_avg_time_df(n: int = 30) -> pd.DataFrame:
|
| 83 |
+
"""Return a DataFrame with average request time for each of the past *n* days."""
|
| 84 |
+
now = datetime.now(timezone.utc)
|
| 85 |
+
with FileLock(LOCK_FILE):
|
| 86 |
+
times = _load_times()
|
| 87 |
+
records = []
|
| 88 |
+
for i in range(n):
|
| 89 |
+
day = (now - timedelta(days=n - 1 - i))
|
| 90 |
+
day_str = day.strftime("%Y-%m-%d")
|
| 91 |
+
# Format date for display (MMM DD)
|
| 92 |
+
display_date = day.strftime("%b %d")
|
| 93 |
+
|
| 94 |
+
# Calculate average time for the day
|
| 95 |
+
day_times = times.get(day_str, [])
|
| 96 |
+
avg_time = round(sum(day_times) / len(day_times), 2) if day_times else 0
|
| 97 |
+
|
| 98 |
+
records.append({
|
| 99 |
+
"date": display_date,
|
| 100 |
+
"avg_time": avg_time,
|
| 101 |
+
"request_count": len(day_times),
|
| 102 |
+
"full_date": day_str # Keep full date for tooltip
|
| 103 |
+
})
|
| 104 |
return pd.DataFrame(records)
|
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import os
|
| 2 |
import asyncio
|
|
|
|
| 3 |
from typing import Optional
|
| 4 |
from datetime import datetime
|
| 5 |
import httpx
|
|
@@ -9,7 +10,7 @@ from dateutil import parser as dateparser
|
|
| 9 |
from limits import parse
|
| 10 |
from limits.aio.storage import MemoryStorage
|
| 11 |
from limits.aio.strategies import MovingWindowRateLimiter
|
| 12 |
-
from analytics import record_request, last_n_days_df
|
| 13 |
|
| 14 |
# Configuration
|
| 15 |
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
|
|
@@ -65,8 +66,10 @@ async def search_web(
|
|
| 65 |
- search_web("stock market today", "news", 10) - Get 10 news articles about today's market
|
| 66 |
- search_web("machine learning basics") - Get 4 general search results (all defaults)
|
| 67 |
"""
|
| 68 |
-
|
|
|
|
| 69 |
if not SERPER_API_KEY:
|
|
|
|
| 70 |
return "Error: SERPER_API_KEY environment variable is not set. Please set it to use this tool."
|
| 71 |
|
| 72 |
# Validate and constrain num_results
|
|
@@ -82,6 +85,8 @@ async def search_web(
|
|
| 82 |
# Check rate limit
|
| 83 |
if not await limiter.hit(rate_limit, "global"):
|
| 84 |
print(f"[{datetime.now().isoformat()}] Rate limit exceeded")
|
|
|
|
|
|
|
| 85 |
return "Error: Rate limit exceeded. Please try again later (limit: 500 requests per hour)."
|
| 86 |
|
| 87 |
# Select endpoint based on search type
|
|
@@ -99,6 +104,8 @@ async def search_web(
|
|
| 99 |
resp = await client.post(endpoint, headers=HEADERS, json=payload)
|
| 100 |
|
| 101 |
if resp.status_code != 200:
|
|
|
|
|
|
|
| 102 |
return f"Error: Search API returned status {resp.status_code}. Please check your API key and try again."
|
| 103 |
|
| 104 |
# Extract results based on search type
|
|
@@ -108,6 +115,8 @@ async def search_web(
|
|
| 108 |
results = resp.json().get("organic", [])
|
| 109 |
|
| 110 |
if not results:
|
|
|
|
|
|
|
| 111 |
return f"No {search_type} results found for query: '{query}'. Try a different search term or search type."
|
| 112 |
|
| 113 |
# Fetch HTML content concurrently
|
|
@@ -172,6 +181,8 @@ async def search_web(
|
|
| 172 |
chunks.append(chunk)
|
| 173 |
|
| 174 |
if not chunks:
|
|
|
|
|
|
|
| 175 |
return f"Found {len(results)} {search_type} results for '{query}', but couldn't extract readable content from any of them. The websites might be blocking automated access."
|
| 176 |
|
| 177 |
result = "\n---\n".join(chunks)
|
|
@@ -180,17 +191,20 @@ async def search_web(
|
|
| 180 |
print(
|
| 181 |
f"[{datetime.now().isoformat()}] Extraction complete: {successful_extractions}/{len(results)} successful for query '{query}'"
|
| 182 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
return summary + result
|
| 184 |
|
| 185 |
except Exception as e:
|
|
|
|
|
|
|
|
|
|
| 186 |
return f"Error occurred while searching: {str(e)}. Please try again or check your query."
|
| 187 |
|
| 188 |
|
| 189 |
-
async def search_and_log(query, search_type, num_results):
|
| 190 |
-
text = await search_web(query, search_type, num_results)
|
| 191 |
-
chart_df = last_n_days_df(14) # Show last 14 days
|
| 192 |
-
return text, chart_df
|
| 193 |
-
|
| 194 |
|
| 195 |
# Create Gradio interface
|
| 196 |
with gr.Blocks(title="Web Search MCP Server") as demo:
|
|
@@ -204,104 +218,132 @@ with gr.Blocks(title="Web Search MCP Server") as demo:
|
|
| 204 |
"""
|
| 205 |
)
|
| 206 |
|
| 207 |
-
gr.Markdown(
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/use-with-mcp-lg-dark.svg"
|
| 228 |
-
alt="Use with MCP"
|
| 229 |
-
style="height: 36px;">
|
| 230 |
-
</a>
|
| 231 |
-
</div>
|
| 232 |
-
""",
|
| 233 |
-
padding=0,
|
| 234 |
-
)
|
| 235 |
-
|
| 236 |
-
with gr.Row():
|
| 237 |
-
with gr.Column(scale=3):
|
| 238 |
-
query_input = gr.Textbox(
|
| 239 |
-
label="Search Query",
|
| 240 |
-
placeholder='e.g. "OpenAI news", "climate change 2024", "AI developments"',
|
| 241 |
-
info="Required: Enter your search query",
|
| 242 |
)
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
)
|
| 250 |
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
|
| 261 |
-
|
| 262 |
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
|
| 296 |
search_button.click(
|
| 297 |
-
fn=
|
| 298 |
inputs=[query_input, search_type_input, num_results_input],
|
| 299 |
-
outputs=
|
| 300 |
api_name=False, # Hide this endpoint from API & MCP
|
| 301 |
)
|
| 302 |
|
| 303 |
-
# Load fresh analytics data when the page loads
|
| 304 |
-
demo.load(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
|
| 306 |
# Expose search_web as the only MCP tool
|
| 307 |
gr.api(search_web, api_name="search_web")
|
|
|
|
| 1 |
import os
|
| 2 |
import asyncio
|
| 3 |
+
import time
|
| 4 |
from typing import Optional
|
| 5 |
from datetime import datetime
|
| 6 |
import httpx
|
|
|
|
| 10 |
from limits import parse
|
| 11 |
from limits.aio.storage import MemoryStorage
|
| 12 |
from limits.aio.strategies import MovingWindowRateLimiter
|
| 13 |
+
from analytics import record_request, last_n_days_df, last_n_days_avg_time_df
|
| 14 |
|
| 15 |
# Configuration
|
| 16 |
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
|
|
|
|
| 66 |
- search_web("stock market today", "news", 10) - Get 10 news articles about today's market
|
| 67 |
- search_web("machine learning basics") - Get 4 general search results (all defaults)
|
| 68 |
"""
|
| 69 |
+
start_time = time.time()
|
| 70 |
+
|
| 71 |
if not SERPER_API_KEY:
|
| 72 |
+
await record_request() # Record even failed requests
|
| 73 |
return "Error: SERPER_API_KEY environment variable is not set. Please set it to use this tool."
|
| 74 |
|
| 75 |
# Validate and constrain num_results
|
|
|
|
| 85 |
# Check rate limit
|
| 86 |
if not await limiter.hit(rate_limit, "global"):
|
| 87 |
print(f"[{datetime.now().isoformat()}] Rate limit exceeded")
|
| 88 |
+
duration = time.time() - start_time
|
| 89 |
+
await record_request(duration)
|
| 90 |
return "Error: Rate limit exceeded. Please try again later (limit: 500 requests per hour)."
|
| 91 |
|
| 92 |
# Select endpoint based on search type
|
|
|
|
| 104 |
resp = await client.post(endpoint, headers=HEADERS, json=payload)
|
| 105 |
|
| 106 |
if resp.status_code != 200:
|
| 107 |
+
duration = time.time() - start_time
|
| 108 |
+
await record_request(duration)
|
| 109 |
return f"Error: Search API returned status {resp.status_code}. Please check your API key and try again."
|
| 110 |
|
| 111 |
# Extract results based on search type
|
|
|
|
| 115 |
results = resp.json().get("organic", [])
|
| 116 |
|
| 117 |
if not results:
|
| 118 |
+
duration = time.time() - start_time
|
| 119 |
+
await record_request(duration)
|
| 120 |
return f"No {search_type} results found for query: '{query}'. Try a different search term or search type."
|
| 121 |
|
| 122 |
# Fetch HTML content concurrently
|
|
|
|
| 181 |
chunks.append(chunk)
|
| 182 |
|
| 183 |
if not chunks:
|
| 184 |
+
duration = time.time() - start_time
|
| 185 |
+
await record_request(duration)
|
| 186 |
return f"Found {len(results)} {search_type} results for '{query}', but couldn't extract readable content from any of them. The websites might be blocking automated access."
|
| 187 |
|
| 188 |
result = "\n---\n".join(chunks)
|
|
|
|
| 191 |
print(
|
| 192 |
f"[{datetime.now().isoformat()}] Extraction complete: {successful_extractions}/{len(results)} successful for query '{query}'"
|
| 193 |
)
|
| 194 |
+
|
| 195 |
+
# Record successful request with duration
|
| 196 |
+
duration = time.time() - start_time
|
| 197 |
+
await record_request(duration)
|
| 198 |
+
|
| 199 |
return summary + result
|
| 200 |
|
| 201 |
except Exception as e:
|
| 202 |
+
# Record failed request with duration
|
| 203 |
+
duration = time.time() - start_time
|
| 204 |
+
await record_request(duration)
|
| 205 |
return f"Error occurred while searching: {str(e)}. Please try again or check your query."
|
| 206 |
|
| 207 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
# Create Gradio interface
|
| 210 |
with gr.Blocks(title="Web Search MCP Server") as demo:
|
|
|
|
| 218 |
"""
|
| 219 |
)
|
| 220 |
|
| 221 |
+
gr.Markdown("# 🔍 Web Search MCP Server")
|
| 222 |
+
|
| 223 |
+
with gr.Tabs():
|
| 224 |
+
with gr.Tab("App"):
|
| 225 |
+
gr.Markdown(
|
| 226 |
+
"""
|
| 227 |
+
This MCP server provides web search capabilities to LLMs. It can perform general web searches
|
| 228 |
+
or specifically search for fresh news articles, extracting the main content from results.
|
| 229 |
+
|
| 230 |
+
**⚡ Speed-Focused:** Optimized to complete the entire search process - from query to
|
| 231 |
+
fully extracted web content - in under 3 seconds. Check out the Analytics tab
|
| 232 |
+
to see real-time performance metrics.
|
| 233 |
+
|
| 234 |
+
**Search Types:**
|
| 235 |
+
- **General Search**: Diverse results from various sources (blogs, docs, articles, etc.)
|
| 236 |
+
- **News Search**: Fresh news articles and breaking stories from news sources
|
| 237 |
+
|
| 238 |
+
**Note:** This interface is primarily designed for MCP tool usage by LLMs, but you can
|
| 239 |
+
also test it manually below.
|
| 240 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
)
|
| 242 |
+
|
| 243 |
+
gr.HTML(
|
| 244 |
+
"""
|
| 245 |
+
<div style="margin-bottom: 24px;">
|
| 246 |
+
<a href="https://huggingface.co/spaces/victor/websearch?view=api">
|
| 247 |
+
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/use-with-mcp-lg-dark.svg"
|
| 248 |
+
alt="Use with MCP"
|
| 249 |
+
style="height: 36px;">
|
| 250 |
+
</a>
|
| 251 |
+
</div>
|
| 252 |
+
""",
|
| 253 |
+
padding=0,
|
| 254 |
)
|
| 255 |
|
| 256 |
+
with gr.Row():
|
| 257 |
+
with gr.Column(scale=3):
|
| 258 |
+
query_input = gr.Textbox(
|
| 259 |
+
label="Search Query",
|
| 260 |
+
placeholder='e.g. "OpenAI news", "climate change 2024", "AI developments"',
|
| 261 |
+
info="Required: Enter your search query",
|
| 262 |
+
)
|
| 263 |
+
with gr.Column(scale=1):
|
| 264 |
+
search_type_input = gr.Radio(
|
| 265 |
+
choices=["search", "news"],
|
| 266 |
+
value="search",
|
| 267 |
+
label="Search Type",
|
| 268 |
+
info="Choose search type",
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
with gr.Row():
|
| 272 |
+
num_results_input = gr.Slider(
|
| 273 |
+
minimum=1,
|
| 274 |
+
maximum=20,
|
| 275 |
+
value=4,
|
| 276 |
+
step=1,
|
| 277 |
+
label="Number of Results",
|
| 278 |
+
info="Optional: How many results to fetch (default: 4)",
|
| 279 |
+
)
|
| 280 |
|
| 281 |
+
search_button = gr.Button("Search", variant="primary")
|
| 282 |
|
| 283 |
+
output = gr.Textbox(
|
| 284 |
+
label="Extracted Content",
|
| 285 |
+
lines=25,
|
| 286 |
+
max_lines=50,
|
| 287 |
+
info="The extracted article content will appear here",
|
| 288 |
+
)
|
| 289 |
|
| 290 |
+
# Add examples
|
| 291 |
+
gr.Examples(
|
| 292 |
+
examples=[
|
| 293 |
+
["OpenAI GPT-5 latest developments", "news", 5],
|
| 294 |
+
["React hooks useState", "search", 4],
|
| 295 |
+
["Tesla stock price today", "news", 6],
|
| 296 |
+
["Apple Vision Pro reviews", "search", 4],
|
| 297 |
+
["best Italian restaurants NYC", "search", 4],
|
| 298 |
+
],
|
| 299 |
+
inputs=[query_input, search_type_input, num_results_input],
|
| 300 |
+
outputs=output,
|
| 301 |
+
fn=search_web,
|
| 302 |
+
cache_examples=False,
|
| 303 |
+
)
|
| 304 |
|
| 305 |
+
with gr.Tab("Analytics"):
|
| 306 |
+
gr.Markdown("## Community Usage Analytics")
|
| 307 |
+
gr.Markdown("Track daily request counts and average response times from all community users.")
|
| 308 |
+
|
| 309 |
+
with gr.Row():
|
| 310 |
+
with gr.Column():
|
| 311 |
+
requests_plot = gr.BarPlot(
|
| 312 |
+
value=last_n_days_df(14), # Show only last 14 days for better visibility
|
| 313 |
+
x="date",
|
| 314 |
+
y="count",
|
| 315 |
+
title="Daily Request Count",
|
| 316 |
+
tooltip=["date", "count"],
|
| 317 |
+
height=350,
|
| 318 |
+
x_label_angle=-45, # Rotate labels to prevent overlap
|
| 319 |
+
container=False,
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
with gr.Column():
|
| 323 |
+
avg_time_plot = gr.BarPlot(
|
| 324 |
+
value=last_n_days_avg_time_df(14), # Show only last 14 days
|
| 325 |
+
x="date",
|
| 326 |
+
y="avg_time",
|
| 327 |
+
title="Average Request Time (seconds)",
|
| 328 |
+
tooltip=["date", "avg_time", "request_count"],
|
| 329 |
+
height=350,
|
| 330 |
+
x_label_angle=-45,
|
| 331 |
+
container=False,
|
| 332 |
+
)
|
| 333 |
|
| 334 |
search_button.click(
|
| 335 |
+
fn=search_web, # Use search_web directly instead of search_and_log
|
| 336 |
inputs=[query_input, search_type_input, num_results_input],
|
| 337 |
+
outputs=output,
|
| 338 |
api_name=False, # Hide this endpoint from API & MCP
|
| 339 |
)
|
| 340 |
|
| 341 |
+
# Load fresh analytics data when the page loads or Analytics tab is clicked
|
| 342 |
+
demo.load(
|
| 343 |
+
fn=lambda: (last_n_days_df(14), last_n_days_avg_time_df(14)),
|
| 344 |
+
outputs=[requests_plot, avg_time_plot],
|
| 345 |
+
api_name=False
|
| 346 |
+
)
|
| 347 |
|
| 348 |
# Expose search_web as the only MCP tool
|
| 349 |
gr.api(search_web, api_name="search_web")
|