Spaces:
Runtime error
Runtime error
| import torch | |
| import gradio as gr | |
| import spaces | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| import os | |
| from threading import Thread | |
| import random | |
| from datasets import load_dataset | |
| HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
| MODEL_ID = "CohereForAI/c4ai-command-r7b-12-2024" | |
| MODELS = os.environ.get("MODELS") | |
| MODEL_NAME = MODEL_ID.split("/")[-1] | |
| TITLE = "<h1><center>New japanese LLM model webui</center></h1>" | |
| DESCRIPTION = f""" | |
| <h3>MODEL: <a href="https://huggingface.co/CohereForAI/c4ai-command-r7b-12-2024">CohereForAI/c4ai-command-r7b-12-2024</a></h3> | |
| <center> | |
| <p> | |
| <br> | |
| cc-by-nc | |
| </p> | |
| </center> | |
| """ | |
| CSS = """ | |
| .duplicate-button { | |
| margin: auto !important; | |
| color: white !important; | |
| background: black !important; | |
| border-radius: 100vh !important; | |
| } | |
| h3 { | |
| text-align: center; | |
| } | |
| .chatbox .messages .message.user { | |
| background-color: #e1f5fe; | |
| } | |
| .chatbox .messages .message.bot { | |
| background-color: #eeeeee; | |
| } | |
| """ | |
| # モデルとトークナイザーの読み込み | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_ID, | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto", | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
| # データセットをロードしてスプリットを確認 | |
| dataset = load_dataset("elyza/ELYZA-tasks-100") | |
| print(dataset) | |
| # 使用するスプリット名を確認 | |
| split_name = "train" if "train" in dataset else "test" # デフォルトをtrainにし、なければtestにフォールバック | |
| # 適切なスプリットから10個の例を取得 | |
| examples_list = list(dataset[split_name]) # スプリットをリストに変換 | |
| examples = random.sample(examples_list, 50) # リストからランダムに10個選択 | |
| example_inputs = [[example['input']] for example in examples] # ネストされたリストに変換 | |
| def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float): | |
| print(f'message is - {message}') | |
| print(f'history is - {history}') | |
| conversation = [] | |
| for prompt, answer in history: | |
| conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}]) | |
| conversation.append({"role": "user", "content": message}) | |
| input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) | |
| inputs = tokenizer(input_ids, return_tensors="pt").to(0) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| inputs, | |
| streamer=streamer, | |
| top_k=top_k, | |
| top_p=top_p, | |
| repetition_penalty=penalty, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=True, | |
| temperature=temperature, | |
| eos_token_id=[255001], | |
| ) | |
| thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| yield buffer | |
| chatbot = gr.Chatbot(height=500) | |
| with gr.Blocks(css=CSS) as demo: | |
| gr.HTML(TITLE) | |
| gr.HTML(DESCRIPTION) | |
| gr.ChatInterface( | |
| fn=stream_chat, | |
| chatbot=chatbot, | |
| fill_height=True, | |
| theme="soft", | |
| retry_btn=None, | |
| undo_btn="Delete Previous", | |
| clear_btn="Clear", | |
| additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
| additional_inputs=[ | |
| gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| step=0.1, | |
| value=0.8, | |
| label="Temperature", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=128, | |
| maximum=1000000, | |
| step=1, | |
| value=100000, | |
| label="Max new tokens", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.1, | |
| value=0.8, | |
| label="top_p", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=1, | |
| maximum=20, | |
| step=1, | |
| value=20, | |
| label="top_k", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=0.0, | |
| maximum=2.0, | |
| step=0.1, | |
| value=1.0, | |
| label="Repetition penalty", | |
| render=False, | |
| ), | |
| ], | |
| #examples=example_inputs, # ネストされたリストを渡す | |
| examples=[ | |
| ["Give me five ideas for a child's summer science project."], | |
| ["Create a tutorial for building a breakout game using markdown."], | |
| ["超能力を持つ主人公のSF物語のシナリオを考えてください。伏線の設定、テーマやログラインを理論的に使用してください"], | |
| ["子供の夏休みの自由研究のための、5つのアイデアと、その手法を簡潔に教えてください。"], | |
| ["パズルゲームのスクリプト作成のためにアドバイスお願いします"], | |
| ["マークダウン記法にて、ブロック崩しのゲーム作成の教科書作成してください"], | |
| ["シルバー川柳を考えてください"], | |
| ["日本語の慣用句、ことわざについての試験問題を考えてください"], | |
| ["ドラえもんの登場人物教えて"], | |
| ["お好み焼きの作り方教えてください"], | |
| ["問題 9.11と9.9どちらが大きい?step by stepで、論理的に考えてください。"], | |
| ], | |
| cache_examples=False, | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |