Spaces:
Running
Running
Franny Dean
commited on
Commit
·
3d2cf31
1
Parent(s):
9a02a49
animation changed to animate
Browse files- .ipynb_checkpoints/app-checkpoint.py +5 -5
- app.py +5 -5
.ipynb_checkpoints/app-checkpoint.py
CHANGED
|
@@ -427,7 +427,7 @@ def solve_ODE_for_volume(Rm, Ra, Emax, Emin, Vd, Tc, start_v, t):
|
|
| 427 |
|
| 428 |
return volumes
|
| 429 |
|
| 430 |
-
def pvloop_simulator(Rm, Ra, Emax, Emin, Vd, Tc, start_v,
|
| 431 |
|
| 432 |
|
| 433 |
# Define initial parameters
|
|
@@ -461,7 +461,7 @@ def pvloop_simulator(Rm, Ra, Emax, Emin, Vd, Tc, start_v, animation=True):
|
|
| 461 |
plt.xlim((0,250))
|
| 462 |
start = (N-2)*60000
|
| 463 |
end = (N-2)*60000+50000
|
| 464 |
-
if
|
| 465 |
line = ax.plot(volumes[start:(start+1)], pressures[start:(start+1)], lw=1, color='b')
|
| 466 |
point = ax.scatter(volumes[start:(start+1)], pressures[start:(start+1)], c="b", s=5)
|
| 467 |
else:
|
|
@@ -483,14 +483,14 @@ def pvloop_simulator(Rm, Ra, Emax, Emin, Vd, Tc, start_v, animation=True):
|
|
| 483 |
y = pressures[start:end]
|
| 484 |
ax.plot(x, y, lw=1, c='b')
|
| 485 |
|
| 486 |
-
if
|
| 487 |
anim = animation.FuncAnimation(fig, partial(update), frames=43, interval=1)
|
| 488 |
anim.save("prediction.mp4")
|
| 489 |
|
| 490 |
return plt, Rm, Ra, Emax, Emin, Vd, Tc, start_v
|
| 491 |
|
| 492 |
def pvloop_simulator_plot_only(Rm, Ra, Emax, Emin, Vd, Tc, start_v):
|
| 493 |
-
plot,_,_,_,_,_,_,_ =pvloop_simulator(Rm, Ra, Emax, Emin, Vd, Tc, start_v,
|
| 494 |
plt.title('Simulated PI-SSL LV Pressure Volume Loop', fontsize=16)
|
| 495 |
return plot
|
| 496 |
|
|
@@ -506,7 +506,7 @@ def generate_example():
|
|
| 506 |
val_seq = val_data[0]
|
| 507 |
|
| 508 |
val_tensor = torch.tensor(val_seq, dtype=torch.float32)
|
| 509 |
-
n=random.randint(0,
|
| 510 |
results = model(val_tensor)[n]
|
| 511 |
|
| 512 |
filename = val_data[1][0][n]
|
|
|
|
| 427 |
|
| 428 |
return volumes
|
| 429 |
|
| 430 |
+
def pvloop_simulator(Rm, Ra, Emax, Emin, Vd, Tc, start_v, animate=True):
|
| 431 |
|
| 432 |
|
| 433 |
# Define initial parameters
|
|
|
|
| 461 |
plt.xlim((0,250))
|
| 462 |
start = (N-2)*60000
|
| 463 |
end = (N-2)*60000+50000
|
| 464 |
+
if animate:
|
| 465 |
line = ax.plot(volumes[start:(start+1)], pressures[start:(start+1)], lw=1, color='b')
|
| 466 |
point = ax.scatter(volumes[start:(start+1)], pressures[start:(start+1)], c="b", s=5)
|
| 467 |
else:
|
|
|
|
| 483 |
y = pressures[start:end]
|
| 484 |
ax.plot(x, y, lw=1, c='b')
|
| 485 |
|
| 486 |
+
if animate:
|
| 487 |
anim = animation.FuncAnimation(fig, partial(update), frames=43, interval=1)
|
| 488 |
anim.save("prediction.mp4")
|
| 489 |
|
| 490 |
return plt, Rm, Ra, Emax, Emin, Vd, Tc, start_v
|
| 491 |
|
| 492 |
def pvloop_simulator_plot_only(Rm, Ra, Emax, Emin, Vd, Tc, start_v):
|
| 493 |
+
plot,_,_,_,_,_,_,_ =pvloop_simulator(Rm, Ra, Emax, Emin, Vd, Tc, start_v, animate=False)
|
| 494 |
plt.title('Simulated PI-SSL LV Pressure Volume Loop', fontsize=16)
|
| 495 |
return plot
|
| 496 |
|
|
|
|
| 506 |
val_seq = val_data[0]
|
| 507 |
|
| 508 |
val_tensor = torch.tensor(val_seq, dtype=torch.float32)
|
| 509 |
+
n=random.randint(0, 27)
|
| 510 |
results = model(val_tensor)[n]
|
| 511 |
|
| 512 |
filename = val_data[1][0][n]
|
app.py
CHANGED
|
@@ -427,7 +427,7 @@ def solve_ODE_for_volume(Rm, Ra, Emax, Emin, Vd, Tc, start_v, t):
|
|
| 427 |
|
| 428 |
return volumes
|
| 429 |
|
| 430 |
-
def pvloop_simulator(Rm, Ra, Emax, Emin, Vd, Tc, start_v,
|
| 431 |
|
| 432 |
|
| 433 |
# Define initial parameters
|
|
@@ -461,7 +461,7 @@ def pvloop_simulator(Rm, Ra, Emax, Emin, Vd, Tc, start_v, animation=True):
|
|
| 461 |
plt.xlim((0,250))
|
| 462 |
start = (N-2)*60000
|
| 463 |
end = (N-2)*60000+50000
|
| 464 |
-
if
|
| 465 |
line = ax.plot(volumes[start:(start+1)], pressures[start:(start+1)], lw=1, color='b')
|
| 466 |
point = ax.scatter(volumes[start:(start+1)], pressures[start:(start+1)], c="b", s=5)
|
| 467 |
else:
|
|
@@ -483,14 +483,14 @@ def pvloop_simulator(Rm, Ra, Emax, Emin, Vd, Tc, start_v, animation=True):
|
|
| 483 |
y = pressures[start:end]
|
| 484 |
ax.plot(x, y, lw=1, c='b')
|
| 485 |
|
| 486 |
-
if
|
| 487 |
anim = animation.FuncAnimation(fig, partial(update), frames=43, interval=1)
|
| 488 |
anim.save("prediction.mp4")
|
| 489 |
|
| 490 |
return plt, Rm, Ra, Emax, Emin, Vd, Tc, start_v
|
| 491 |
|
| 492 |
def pvloop_simulator_plot_only(Rm, Ra, Emax, Emin, Vd, Tc, start_v):
|
| 493 |
-
plot,_,_,_,_,_,_,_ =pvloop_simulator(Rm, Ra, Emax, Emin, Vd, Tc, start_v,
|
| 494 |
plt.title('Simulated PI-SSL LV Pressure Volume Loop', fontsize=16)
|
| 495 |
return plot
|
| 496 |
|
|
@@ -506,7 +506,7 @@ def generate_example():
|
|
| 506 |
val_seq = val_data[0]
|
| 507 |
|
| 508 |
val_tensor = torch.tensor(val_seq, dtype=torch.float32)
|
| 509 |
-
n=random.randint(0,
|
| 510 |
results = model(val_tensor)[n]
|
| 511 |
|
| 512 |
filename = val_data[1][0][n]
|
|
|
|
| 427 |
|
| 428 |
return volumes
|
| 429 |
|
| 430 |
+
def pvloop_simulator(Rm, Ra, Emax, Emin, Vd, Tc, start_v, animate=True):
|
| 431 |
|
| 432 |
|
| 433 |
# Define initial parameters
|
|
|
|
| 461 |
plt.xlim((0,250))
|
| 462 |
start = (N-2)*60000
|
| 463 |
end = (N-2)*60000+50000
|
| 464 |
+
if animate:
|
| 465 |
line = ax.plot(volumes[start:(start+1)], pressures[start:(start+1)], lw=1, color='b')
|
| 466 |
point = ax.scatter(volumes[start:(start+1)], pressures[start:(start+1)], c="b", s=5)
|
| 467 |
else:
|
|
|
|
| 483 |
y = pressures[start:end]
|
| 484 |
ax.plot(x, y, lw=1, c='b')
|
| 485 |
|
| 486 |
+
if animate:
|
| 487 |
anim = animation.FuncAnimation(fig, partial(update), frames=43, interval=1)
|
| 488 |
anim.save("prediction.mp4")
|
| 489 |
|
| 490 |
return plt, Rm, Ra, Emax, Emin, Vd, Tc, start_v
|
| 491 |
|
| 492 |
def pvloop_simulator_plot_only(Rm, Ra, Emax, Emin, Vd, Tc, start_v):
|
| 493 |
+
plot,_,_,_,_,_,_,_ =pvloop_simulator(Rm, Ra, Emax, Emin, Vd, Tc, start_v, animate=False)
|
| 494 |
plt.title('Simulated PI-SSL LV Pressure Volume Loop', fontsize=16)
|
| 495 |
return plot
|
| 496 |
|
|
|
|
| 506 |
val_seq = val_data[0]
|
| 507 |
|
| 508 |
val_tensor = torch.tensor(val_seq, dtype=torch.float32)
|
| 509 |
+
n=random.randint(0, 27)
|
| 510 |
results = model(val_tensor)[n]
|
| 511 |
|
| 512 |
filename = val_data[1][0][n]
|